SUPERCOMPUTING FOR ACOUSTIC SIMULATION. A REVIEW

Main Article Content

FABIÁN BASTIDAS-ALARCÓN, LIDIA CASTRO-CEPEDA, ANDRÉS NOGUERA-CUNDAR, JOSÉ LUIS PÉREZ- ROJAS

Abstract

Acoustics plays a significant role in various aspects of everyday life and finds applications in diverse fields such as medicine, where ultrasound is used to detect anomalies in the human body, noise pollution control, music, and the study of the universe, among others. This article explores the extent of scientific literature on supercomputing for acoustic simulation. The methodology consists of four steps: formulating research questions, conducting a literature search, selecting highly impactful articles, and data compilation. Out of a total of 211 articles obtained from reviewed databases, including Springer, Google Scholar, ScienceDirect, Scientific Reports, ChEES, Journal of Physics, Hindawi, and Research Article, 20 articles were chosen for analysis. It was concluded that the dynamic study of sound is indeed complex, requiring intensive data processing. This necessitates the use of supercomputers with multiple cores to solve various mathematical models, with the fundamental focus of the study being the resolution of the wave equation.

Article Details

Section
Education Law
Author Biography

FABIÁN BASTIDAS-ALARCÓN, LIDIA CASTRO-CEPEDA, ANDRÉS NOGUERA-CUNDAR, JOSÉ LUIS PÉREZ- ROJAS

FABIÁN BASTIDAS-ALARCÓN 1, LIDIA CASTRO-CEPEDA 2*, ANDRÉS NOGUERA-CUNDAR 3, JOSÉ LUIS PÉREZ- ROJAS 4

1 Escuela Superior Politécnica de Chimborazo, Grupo de Investigación GISAI; 

2 Escuela Superior Politécnica de Chimborazo, Grupo de Investigación GIDETER; 

3 Escuela Superior Politécnica de Chimborazo, Grupo de Investigación GIDENM; 

4 Escuela Superior Politécnica de Chimborazo, Grupo de Investigación GDP

References

C. D. S. M. a. T. W. G. Bunting, «Solving Complex Acoustic Problems Using High-Performance Computations,» Sandia National Laboratories, p. 15, 2020.

L. S. A. E. M. D. A.-A. G. a. M. B. L. Krenz, «3D Acoustic-Elastic Simulations for Tsunami-Genesis,» 24 04 2021. [En línea]. Available: https://github.com/SeisSol/SeisSol/. [Último acceso: 29 07 2021].

Z. Wang et al., «A quantum circuit simulator and its applications on Sunway TaihuLight supercomputer,» Scientific Reports, vol. 11, nº 1, p. 355, 2021.

K. Lopatka and A. Czyzewski, «Acceleration of decision making in sound event recognition employing supercomputing cluster,» Information Sciences, vol. 285, nº 1, pp. 223-236, 2014.

A. Goncharsky and S. Seryozhnikov, «Supercomputer Simulations in Development of 3D Ultrasonic Tomography Devices,» Communications in Computer and Information Science, vol. 1331, pp. 353-364, 2020.

Y. Y. a. H. W. M. Cai, «Urban Traffic Noise Maps under 3D Complex Building Environments on a Supercomputer,» Journal of Advanced Transportation, vol. 2105, 2018.

A. C. T. e. al., «PRISMA extension for scoping reviews (PRISMA-ScR) Checklist and explanation,,» Annals of Internal Medicine, vol. 169, nº 7, pp. 467-473, 2018.

T. v. K. A. A. D. A. E. L. A. M. S. a. A. S. S. V. E. Borisov, «Influence of acoustic type waves on the vortex wake behind a wing in the supersonic flow,» Journal of Physics: Conference Series, vol. 1250, nº 01, 2019.

S. Y. Romanov, «Supercomputer Simulations of Ultrasound Tomography Problems of Flat Objects,,» Lobachevskii Journal of Mathematics, vol. 41, nº 8, pp. 1563-1570, agosto 2020.

A. G. a. S. R. E. Bazulin, «Solving Inverse Problems of Ultrasound Tomography in a Nondestructive Testing on a Supercomputer,» pp. 392-402, 2019 septiembre.

R. P. T. C. B. D. K. K. a. H. L. J. Stoter, «Automated reconstruction of 3D input data for noise simulation,,» Computers, Environment and Urban Systems, p. 101424, marzo 2020.

S. Romanov, «Supercomputer simulation study of the convergence of iterative methods for solving inverse problems of 3D acoustic tomography with the data on a cylindrical surface,» Communications in Computer and Information Science, vol. 965, pp. 388-400.

A. D. V. N. a. L. P. V. Filatova, «Supercomputer Simulations of the Medical Ultrasound Tomography Problem,» Communications in Computer and Information Science, vol. 1063, pp. 297-308, 2019 abril 2019.

K. N. K. K. a. A. S. R. K. Mishra, «Dynamic noise mapping of road traffic in an urban city,,» Arabian Journal of Geosciences, vol. 14, nº 2, pp. 1-11, enero 2021.

J. K. M. S. a. B. K. A. Czyzewski, «Employing Supercomputing Cluster to Acoustic Noise Map Creation,» Audio Engineering Society, octubre 2012.

C. H. a. M. C. Z. Lan, «Urban Road traffic noise spatiotemporal distribution mapping using multisource data,,» Transportation Research Part D: Transport and Environment, vol. 82, 2020.

J. H. C. H. a. M. C. W. Yang, «Evaluation of urban traffic noise pollution based on noise maps,”,» Transportation Research Part D: Transport and Environment, vol. 87, nº 102516,, 2020 octubre .

A. C. J. K. a. B. K. M. Szczodrak, «Frequently updated noise threat maps created with use of supercomputing grid,» Noise Mapping, vol. 1, nº 1, pp. 32-39, 2014 enero.

J. C. P. C. a. C. A. Y. Deng, «A framework for 3D traffic noise mapping using data from BIM and GIS integration,» Structure and Infrastructure Engineering, vol. 12, nº 10, pp. 1267-1280, octubre 2016.