USING PYTHON FOR TEACHING CLASSIC MECHANICS IN UNIVERSITY STUDENTS

Main Article Content

MARIA FERNANDA HEREDIA MOYANO, NATALY BONILLA GARCÍA, MYRIAN CECILIA BORJA SAAVEDRA, MIGUEL ÁNGEL SÁEZ PAGUAY, ALEX FERNANDA ERAZO LUZURIAGA, JHONNY MARLON BORJA BORJA, SANDRA FABIOLA HEREDIA MOYANO

Abstract

This article contains codes in Python programming language as a tool to support the teaching of classical physics, presents a menu of options for calculating magnitudes within uniformly varied rectilinear motion, parabolic motion, free fall, and uniform circular motion. The written codes can be verified using Python online, and there is also a code that does require the installation of Python and additional libraries to be able to see the graph of position-time, speed-time and acceleration-time. It was verified that each code works in two different online Python links and for a better understanding of the user the calculation menu is explained in parts.

Article Details

Section
Education Law
Author Biography

MARIA FERNANDA HEREDIA MOYANO, NATALY BONILLA GARCÍA, MYRIAN CECILIA BORJA SAAVEDRA, MIGUEL ÁNGEL SÁEZ PAGUAY, ALEX FERNANDA ERAZO LUZURIAGA, JHONNY MARLON BORJA BORJA, SANDRA FABIOLA HEREDIA MOYANO

1Maria Fernanda Heredia Moyano, 2Nataly Bonilla García, 3Myrian Cecilia Borja Saavedra, 4Miguel Ángel Sáez Paguay, 5Alex Fernanda Erazo Luzuriaga, 6Jhonny Marlon Borja Borja, 7Sandra Fabiola Heredia Moyano,

Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH matriz

Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH matriz

Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH matriz

 Facultad de Recursos Naturales, Escuela Superior Politécnica de Chimborazo (ESPOCH), Orellana.

Ingeniero en Sistemas investigador independiente.

 Máster en Ingeniería Química – investigador independiente.

Máster en Química – estudiante PhD en la Universidad de Pardubice

References

Atoeva Mehriniso Farhodovna, A. J. (2020). Innovative Pedogogical Technologies For Training The Course Of Physics. The American Journal of Interdisciplinary Innovations and Research, 82–91. doi:https://doi.org/10.37547/tajiir/Volume02Issue12-12

Ayars. (2013). Computational Physics with Python. California State: Ayars E.

Bogusevschi, D. M. (2020). Teaching and Learning Physics using 3D Virtual Learning Environment: A Case Study of Combined Virtual Reality and Virtual Laboratory in Secondary School. Journal of Computers in Mathematics and Science Teaching, 39(1), 5-18. Obtenido de https://www.learntechlib.org/primary/p/210965/.

Borcherds, P. (2007). Python: a language for computational physics. Elsiever, 177, Issues 1–2, 199-201. doi:https://doi.org/10.1016/j.cpc.2007.02.019.

Esther Cascarosa, C. S.-A. (2021). Model-based teaching of physics in higher education: a review of educational strategies and cognitive improvements. Journal of Applied Research in Higher Education, 13(1), 33-47. doi:https://doi.org/10.1108/JARHE-11-2019-0287

Giancoli. (2008). Physics for Science and Engineering (4th ed., Vol. 1). Mexico: Pearson.

Giancoli, D. (2014). Physics principles with applications (Vol. 1). Mexico: Pearson.

Gisin, F. D. (2019). Physics without determinism: Alternative interpretations of classical physics. Advancing Physics, 100, 062-107. doi:https://doi.org/10.1103/PhysRevA.100.062107

Resnick, H. a. (2007). Fundamentals of Physics (8 ed.). Cleveland State: Wiley.

Sears, Z. (2009). University Physics (12 ed., Vol. 1). Mexico: Pearson.

Serway, J. (2004). Physics for Scientist and Engineers (6 ed.). California State: Thomson Brooks.

Tetiana Goncharenko, N. Y.-C. (2021). Experience in the Use of Mobile Technologies as a. Kherson State University. Obtenido de https://lib.iitta.gov.ua/727258/1/20201298.pdf