TEACHING MANAGEMENT SCALE OF META-REGULATED LEARNING IN LAW

MARYBEL ESTHER MOLLO-FLORES

Correo: mmollo@ulima.edu.pe

ORCID: https://orcid.org/0000-0002-6384-5866

Universidad de Lima, Lima-Perú

ANGEL DERONCELE-ACOSTA (CORRESPONDING AUTHOR)

Correo: angel.deroncele@usil.pe

ORCID: https://orcid.org/0000-0002-0413-014X

Universidad San Ignacio de Loyola, Lima-Perú

ROGER PEDRO NORABUENA-FIGUEROA

Correo: roger.norabuena@upsjb.edu.pe

ORCID: https://orcid.org/0000-0003-3731-9843

Universidad Privada San Juan Bautista, Lima, Perú.

EDWIN RAMIREZ-ASIS

Correo: ramirezas@crece.uss.edu.pe

ORCID: https://orcid.org/0000-0002-9918-7607

Universidad Señor de Sipan, Chiclayo, Peru.

EMERSON DAMIÁN NORABUENA FIGUEROA

Correo: enorabuenaf@unmsm.edu.pe ORCID: https://orcid.org/0000-0003-2909-7080

Universidad Nacional Mayor de San Marcos, Lima, Perú.

Abstract: Students' deep reflection in their learning process is fundamental; however, there are still not enough advances on how teachers can promote this process in virtual and hybrid environments. The aim of the study was to design and validate the scale of teaching management of meta-regulated learning in ICT-mediated learning contexts. The sample consisted of 244 university teachers from Lima-Peru, and the statistical packages SPSS v26, AMOS v24 and R-Project v.1.2 were used. The reliability and validity analysis of the final construct was carried out by calculating Cronbach's alpha, the Omega coefficient, and the Theta coefficient. The results confirm that the original five-factor structure was re-signified into four final factors (teaching management of self-regulation, teaching management of meta-reflection, teaching management of collaboration and teaching management of meta-regulated learning in students. It provides important information to teachers to implement preventive and intervention actions to improve students' intention to learn, as well as to evaluate their own teaching, considering that more research is needed to examine how students perceive various components in the process of learning to learn.

Keywords: professor; college student; times self-study; social interaction; critical thinking, law.

 \sim

Table of Contents

- 1. INTRODUCTION
- 2. MATERIALS AND METHODS
- 3. RESULTS
 - 3.1 Descriptive Analysis
 - 3.2 Exploratory Factor Analysis
 - 3.3 Confirmatory Factor Analysis
 - 3.4 Subsequent Reliability Analysis
- 4. DISCUSSION AND CONCLUSIONS

1. INTRODUCTION

Meta-regulated learning (MRL) is a new theoretical construct that integrates the theoretical dimensions: cognition, metacognition, self-regulation, collaboration and meta-reflection [1], it is recognized as a field of action of meaningful learning which is concretized in the acquisition of new information through previous knowledge that serves as anchor ideas, being the basis of new knowledge, which produces a transformation of the cognitive and emotional structure [2, 3, 4, 5, 6, 7].

The transformation of the cognitive structure occurs through the metacognitive thinking system [8, 9], self-regulation [10, 11] and collaborative work [12, 13]. In this sense, "cognition is intrinsically intertwined with learning, for as humans have new experiences, they come to new appreciations and concepts" [14, p.10], hence metacognitive strategies help to organize, monitor, and evaluate this learning; to this is added the role of motivation in the performance of the cognitive task [8, 9, 15, 16].

Metacognition is understood for this study as a higher order cognitive ability [17] that defines knowledge as representations of reality [4, 5, 6, 7, 18, 19, 20] that an individual has stored in memory and that includes other sub-systems that process, transform, combine, and construct those knowledge representations [9]. Metacognition is responsible for monitoring, evaluating, and regulating all types of thinking. It is responsible for execution control [8]. Metacognitive learning strategies are developed under actions aimed at knowing one's own mental processes that are redirected to achieve learning goals, which constantly requires a process of self-regulation [21, 22, 23].

Self-regulated learning (SRL) occurs at the meta-cognitive, motivational, and behavioral level of the learner [24, 25, 26, 27] upon reflection of their own learning processes to adjust their actions and goals to achieve desired results in their academic performance [28, 29, 30].

Self-regulation, then, studies how and when learners set goals and then systematically carry out cognitive, affective, and behavioral processes, practices and procedures that bring them closer to those goals [31]. Self-regulation organizes cognitive processes, metacognitive and motivational aspects into an overview of how students understand and then pursue attainable learning goals [32, 33], these processes are structured as part of critical thinking as a higher order cognitive process that promotes the ability to reflect in order to seek effective solutions and solve problems, hence revealing a connection between self-regulation and reflection as an important basis for training at the university level [1].

In addition to the above, there is a process of vital importance that configures the relational level of the educational actors, we refer to the process of collaboration, understood for this study as a collective process of interaction and mutual commitment in the performance of tasks [34], working as a team interdependently, sharing individual and team responsibilities, achieving a stimulating social interaction, managing and evaluating each other internally [35]; In other words, the more students participate in the learning process, the more they will be able to interpret what they learn in a meaningful way [36, 37]. In this sense, collaboration is a process where everyone participates collectively for the achievement of goals, i.e., if students actively participate with others in the learning process, they will be more able to interpret what they learn in a meaningful way [37, 38, 39]. Therefore, attention should be paid to how social interaction develops in work groups, encouraging group

cohesion, trust, respect, and a sense of belonging to the group, to establish a sense of learning community [1].

Once conceptualized the elements of meta-regulated learning: cognition, metacognition, self-regulation, collaboration and meta-reflection, there is no doubt that these processes must be monitored, managed, since they do not occur spontaneously, much less in the learning process in the university context, hence, having an instrument that allows to evaluate how the teaching management of all these components is performed, is revealed as an opportunity to better understand the role of teachers in the teaching-learning process and how they could contribute in a more significant way. Hence, the proposed instrument not only allows for the evaluation of the students' management of metaregulated learning, but also offers a path of how this process should be developed. Hence, the objective of the present study is to determine the construct validity of the scale of teacher management of meta-regulated learning.

2. MATERIALS AND METHODS

A total of 244 university teachers from Lima participated in the present study. The study sample was subjected to a descriptive analysis to know the descriptive particularities of the data, to later choose the appropriate method for estimating the parameters of the factor analysis (exploratory and confirmatory). Then, the exploratory factor analysis was performed with prior compliance with the KMO statistics (Kaiser - Meyer - Olkin sample adequacy measure) and Bartlett's test of sphericity. Within the exploratory factor analysis, the iterative process of the ratios of variances, communalities and extraction methods was observed, to guarantee suitability and stability in the results obtained, and thus, finally obtain the underlying dimensions and their respective items. Subsequently, a confirmatory factor analysis was performed to confirm the underlying structure found in the exploratory factor analysis. Finally, the reliability indicators of the final questionnaire are shown.

3. RESULTS

3.1 Descriptive analysis

The instrument items present a mean ranging from 3.25 (item 11) to 4.82 (item 2), with standard deviations ranging from .42 to 1.07, negative skewness in all items and kurtosis varying from a platykurtic to a leptokurtic distribution, and adequate corrected homogeneity indices, all values above .900 and an overall Cronbach's alpha value of .908. The items do not approximate a univariate normal distribution.

				Stand		Scriptive	resure		orov	- Smirne	ov
lte m	Mi n.	Ma x.	Media n	ard deviat ion	Asymm etry	Kurto sis	lhc	Value	gl	Sig.	Result
р1	1	5	3.90	.897	529	.050	.90 7	.224	24 4	.000	No normal
р2	3	5	4.82	.416	-2.178	4.037	.90 8	.500	24 4	.000	No normal
р3	2	5	4.08	.790	544	178	.90 4	.252	24 4	.000	No normal

Table 1. Descriptive result	ts
-----------------------------	----

RUSSIAN LA	W JU	UKNA
------------	------	------

~~~	~ <b>`</b> ~`	~~	: <u>`</u> `	$\sim\sim\sim$	~~~	·····	****	~~	~~~~	~~~	<b>`.``</b>	*****
	p4	1	5	4.30	.699	916	1.574	.90 7	.257	24 4	.000	No normal
	р5	3	5	4.64	.552	-1.255	.611	.90 6	.421	24 4	.000	No normal
	р6	2	5	4.76	.475	-2.012	4.846	.90 6	.469	24 4	.000	No normal
	р7	3	5	4.27	.637	309	676	.90 4	.290	24 4	.000	No normal
	р8	1	5	4.04	.860	628	057	.90 4	.235	24 4	.000	No normal
	р9	2	5	4.00	.706	147	567	.90 4	.268	24 4	.000	No normal
	р1 0	1	5	4.16	.898	930	.452	.90 4	.253	24 4	.000	No normal
	р1 1	1	5	3.25	1.003	034	312	.90 5	.227	24 4	.000	No normal
	р1 2	1	5	3.99	.877	603	.055	.90 4	.231	24 4	.000	No normal
	р1 3	2	5	4.30	.671	527	378	.90 3	.268	24 4	.000	No normal
	р1 4	2	5	4.19	.730	436	582	.90 3	.236	24 4	.000	No normal
	р1 5	1	5	4.26	.768	982	1.141	.90 5	.258	24 4	.000	No normal
	р1 6	1	5	3.90	1.015	840	.229	.90 5	.257	24 4	.000	No normal
	р1 7	1	5	3.57	1.073	404	471	.90 6	.205	24 4	.000	No normal
	р1 8	1	5	4.33	.812	-1.283	1.838	.90 7	.299	24 4	.000	No normal
	р1 9	1	5	4.02	.977	797	.006	.90 3	.226	24 4	.000	No normal
	р2 0	3	5	4.43	.654	734	511	.90 4	.331	24 4	.000	No normal
	р2 1	1	5	4.30	.763	967	.909	.90 3	.282	24 4	.000	No normal

Volume	XI	(2023)	Issue	5s
--------	----	--------	-------	----

- . . .

****	ŝ	$\sim$	~~	~~~	·····	<b>`.`.`</b>	$\sim\sim\sim$	$\sim$	$\sim$	~~~	~~~	*****
	р2 2	1	F	2.45	1.053	450	247	.90	101	24	000	No
	2	I	С	3.00	1.053	439	207	7	. 191	4	.000	normal
	р2 з	1	Б	4 05	.885	<b>0</b> 04	544	.90	220	24	000	No
	3	I	5	4.05	.005	000	.000	2	.230	4	.000	normal
	p2	r	5	1 02	.819	255	697	.90	224	24	000	No
	4	2	J	4.02	.017		007	1	.224	4	.000	normal

In contrast to the univariate normality test of the data, the results obtained with the multivariate normality tests corroborate the absence of multivariate normality approach.

. . . .

...

.. ...

	la	ble 2. Multiva	ariate normo	ality test
Test		statistical	p-value	Result
Mardia	Skewness	4906.468	< .001	No normal multivariante
Mardia	Kurtosis	24.224	< .001	No normal multivariante
Royston		1743.187	< .001	No normal multivariante
Henze-Zi	irkler	1.169	< .001	No normal multivariante
Energy		4.837	< .001	No normal multivariante

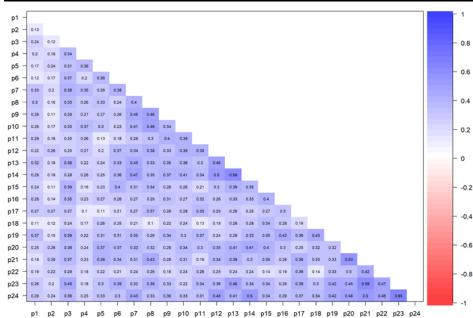



Figure 1. Bivariate correlations between the data with respect to the questionnaire applied to the teachers.

The correlations between the items are positive and range from .099 to .646. From Table 3, it is observed that the model is not additive according to the results of Tukey's activity test (sig. < .0001), which indicates that there is interaction between the items and the respondents. Likewise, according to Hotelling's T-squared test, it indicates that the items of the scale or questionnaire items do not

## ****

have the same mean. On the other hand, Kendall's W concordance coefficient (.145) presents a low concordance value, indicating that the scores on the items are different.

Sources of v	variation		Sum square	of s	gl	Root mean square	F	Sig
Inter			1233.13	35	243	5.075		
subjects								
Intrasubjec	Between	elements	705.098	R	23	30.656	1196.2	.00
ts			705.070	J	25	30.030	85	0
	Residu	Non-	55.815 ^t	5	1	EE 01E	122.46	.00
	e	additivity	22.012		I	55.815	4	0
		Balance	2546.83	24	558	<b>454</b>		
			2040.0.	00	8	.456		
		Total	2402.41		558			
_			2602.65	52	9	.466		
	Total		יב בטכנ	-0	561	E 90		
			3307.75	00	2	.589		
Total			4540.9	05	58	774		
			4540.8	00	55	.776		

 Table 3. ANOVA with Tukey's test for non-additivity

Note: Overall mean = 4.14

Hotelling's t-square test: F = 41.511; gl1 = 23; gl2 = 221; sig. < .001.

a. Concordance coefficient of W = .155.

b. Tukey's estimate of power at which observations must be made to achieve additivity = 3.535.

#### 3.2 Exploratory factor analysis

The exploratory analysis of the data consisted of the application of exploratory factor analysis by means of principal component analysis as a method of extracting dimensions due to the lack of the need to comply with multivariate normality. Likewise, Promax rotation with Kaiser normalization with Kappa value = 4 was used in order to obtain the underlying dimensions of the questionnaire that measure the cognitive learning strategies achieved by the students directed to the teachers. The questionnaire was initially composed of 24 items and after an iterative process, those items with problems or potential problems were eliminated according to the variance ratio indicator, leaving 20 items.

Table 4 shows the variance ratio of the iterative process of elimination and conservation of the items, in which the items: p4, p5, p12, p18, p21, p10, p23 and p24 did not present problems in their factor loadings, i.e. in the whole iterative process they presented factor loadings higher than 0.30. On the other hand, items: p3, p8, p10, p17, p19 and p20 were eliminated for presenting values in their

# $\cdots$

variance ratio lower than 2, while items p1, p2 and p16 were eliminated for presenting low communality problems. Likewise, items p6, p9 and p18 were retained because they do not present stability problems in their factor loadings, despite the fact that they are items that present communalities lower than .50. Finally, items: p7, p11 and p13, do not present discrimination problems in their factor loadings, despite having two factor loadings higher than .30, since the indicator of the variance ratio is higher than 2.00.

 Tabla 4. Iterative process of the variance ratio of the exploratory factor analysis of the

Items	Ratio of variances														
	ltera	ations	;								end				
initials	1	2	3	4	5	6	7	8	9	10					
<b>n</b> 1							Low								
p1							com	muni	ty						
	3.3	1.4	1,6	1.4	2.2	Low									
p2	52	79	00	06	00	community									
			-				1.5	1.							
р3						1.652		27							
							00	8							
p4	No p	oroble	ems in	facto	or load					р4					
р5	No p	oroble	ems in	facto	or load					р5					
<b>n</b> 4	1.1	1.6	-								-1				
р6	59	37									р6				
7		1.5					2.0	2.1	2.62	2.63	<b>5</b> 7				
р7		97					74	63	5	9	р7				
							1.								
p8						1.937	20								
							7								
р9							3.3				р9				
ha			-		-		46				μ,				
	1.8	2.1	1.3	1.											
p10	00	42	29	31											
	00	74	<i>L1</i>	7											
p11										4.53	p11				
ЧЛ			_							5	hii				
p12	Nop	oroble	ems in	facto	or load	dings					p12				

questionnaire.

-12			1.9	2.2	1.9	4 544	2.2	2.4	2.65	2.54	- 17
p13			27	20	82	1.511	38	41	6	9	p13
p14						3.110					p14
p15	4.0	4.3									p15
hi	63	59	_								P13
p16	1.8	2.0	1.7	1.7				Low	comm	unity	
pio	78	09	00	34				LOW	comm	unity	
	1.										
p17	10										
	2										
p18	No p	oroble	ems in	facto	or load	lings					p18
	1.7	1.									
p19		21									
	60	8									
			1.								
p20			19								
			8								
p21	No p	oroble	ems in	facto	or load	dings					<b>p2</b> 1
			8.2			7 027	8.9	7.3	7.79		_ ? ?
p22			12			7.927	12	19	4		p22
p23	Nop	oroble	ems in	facto	or load	dings					p23
p24	No r	oroble	ems in	facto	or load	lings					p24

Volume XI (2023) Issue 5s

Note: based on factor loadings greater than 0.30.

As shown in Table 5, the values of the communalities extracted from the iterative process are higher than .50 with the exception of two items p6, P9 and p18 that present communalities of .479; .481 and .469 respectively. However, these three items were retained, because they present stability and adequate factor loadings for the final exploratory factor analysis model. Likewise, items p1, p2 and p16 were eliminated because they presented low communality values.

ltomo	Community													
ltems initials	lterat	Iterations												
	1	2	3	4	5	6	7	8	9	10	_			
p1		.465												
p2	,358	.358	.547	.539	.334									
р3	.451		.530		.444		.467	.468						

Volume XI (2023) Issue 5s

*****	$\sim$	$\sim\sim\sim\sim\sim\sim\sim\sim$	$\cdots$	

* * * *	••••	• • • •	• • • •	• • • • •						• •	••••
p4	.619	.596	.597	.596	.606	.583	.596	.687	.686	.687	р4
р5	.644	.626	.625	.624	.631	.608	.604	.605	.681	.682	р5
р6	.483	.517	.491	.515	.453	.466	.440	.437	.439	.479	р6
p7	.506	.502	.495	.496	.504	.502	.507	.515	.514	.536	р7
р8	.474	.466	.513	.512	.442	.476	.479				
p9	.464	.466	.484	.478	.483	.490	.512	.477	.479	.481	р9
p10	.515	.520	.521	.523							
p11	.531	.538	.497	.504	.493	.492	.501	.524	.534	.558	p11
p12	.616	.619	.629	.637	.481	.503	.545	.544	.529	.536	p12
p13	.623	.614	.592	.595	.568	.585	.583	.581	.581	.597	p13
p14	.663	.652	.677	.678	.572	.612	.630	.627	.614	.635	р14
p15	.549	.573	.597	.596	.589	.572	.586	.626	.621	.581	p15
p16	.502	.494	.437	.442	.399	.392	.394	.397	.391		
p17	.568										
p18	.489	.491	.447	.450	.467	.482	.495	.450	.482	.469	p18
p19	.659	.670									
p20	.518	.514	.516								
p21	.647	.644	.655	.642	.641	.648	.643	.643	.654	.654	p21
p22	.583	.634	.627	.634	.603	.644	.645	.658	.658	.678	p22
p23	.680	.715	.751	.763	.703	.728	.731	.732	.730	.732	p23
p24	.615	.648	.648	.654	.653	.659	.658	.666	.666	.662	p24

Note: based on factor loadings greater than .30.

As can be seen in Table 6, the factor loadings show stability when extracted by the different methods that do not require compliance with multivariate normality, since their values are similar and are well discriminated in a single underlying dimension.

 Table 6. Stability of factor loadings by different extraction methods.

	Extraction m	ethod			
ltems	Principal component analysis	Unweighted least squares	Principal axis factorizati on	Alpha factorizati on	lmage factoring
р4	.795	.525	.530	.489	.303
р5	.697	.554	.548	.604	.276
р6	.586	.499	.500	.467	.424
р7	.525	.468	.466	.478	.410

	· · · · · ·	• • • •	• • • •		• • • • •
р9	.592	.482	.480	.514	.407
p11	.765	.604	.602	.643	.492
p12	.666	.553	.554	.545	.503
р13	.568	.474	.477	.432	.449
р14	.690	.646	.648	.585	.584
p15	.759	.649	.647	.722	.451
p18	.704	.464	.464	.459	.359
p21	.658	.561	.561	.576	.501
p22	.903	.670	.670	.695	.568
p23	.752	.790	.790	.777	.640
p24	.600	.565	.565	.569	.519

*****

Note: The extraction methods presented do not require multivariate normality.

Table 7 shows the distribution of the items in the underlying dimensions of the stable and discriminant factor loadings. The first dimension is represented by items: p7, p9, p11, p12, p13 and p14. The second dimension is made up of items: p21, p22, p23 and p24, the third dimension is made up of items p6, p15 and p18; and finally, the fourth dimension is made up of items p4 and p5.

Iteres	Dimensi	ons			Ratio of
ltems	1	2	3	4	variances
р7	.525			.323	2.64
р9	.592				
p11	.765		359		4.54
p12	.666				
p13	.568		.356		2.55
p14	.690				
p21		.658			
p22		.903			
p23		.752			
p24		.600			
р6			.586		
p15			.759		
p18			.704		
p4				.795	
р5				.697	

 Table 7. Exploratory factor analysis of the questionnaire

# ****

Note: Factor loadings  $\geq$  .30. Extraction method: unweighted least squares. Rotation method: Promax with Kaiser normalization (Kappa = 4). Kaiser-Meyer-Olkin measure of sampling adequacy (.880). Bartlett's test of sphericity (Approx. Chi-square = 1201.319; gl = 105; Sig. < .0001). Total variance explained (59.781%).

#### 3.3 Confirmatory factor analysis

The results of the exploratory factor analysis were validated and contrasted by means of confirmatory factor analysis, in order to confirm the underlying structure found in the exploratory factor analysis.

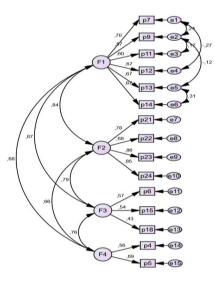



Figura 2. Diagram of the confirmatory factor analysis (standardized coefficients).

		Coefficie	ent			
Relation		Estimat	Standardize	S.E.	C.R.	p-value
		ed	d			
р9	<- F1 	.919	.565	.080	11.498	***
p11	<- F1 	1.402	.600	.138	10.184	***
p12	<- F1 	1.275	.671	.106	11.977	***
p13	<- F1 	1.025	.668	.084	12.180	***
p21	<- F2 	1	.784			
p22	<- F2 	1.392	.683	.090	15.462	***

 Table 8. Coefficients of the confirmatory factor analysis

Volume XI (2023) Issue 5s

<u> </u>	*****	~~`	$\sim\sim\sim$	$\sim\sim\sim$		~~~	~~~~	~~~~~
	p23	<- 	F2	1.367	.855	.073	18.620	***
	p24	<- 	F2	1.333	.847	.082	16.265	***
	р6	<- 	F3	1	.566			
	p15	<- 	F3	1.626	.540	.219	7.418	***
	p18	<- 	F3	1.499	.430	.212	7.070	***
	р4	<- 	F4	1	.564			
	р5	<- 	F4	.910	.690	.130	7.011	***
	p7	<- 	F1	1	.700			
	p14	<- 	F1	1.079	.666	.092	11.725	***

Note: Free asymptotic distribution estimation method

From Table 8 and Figure 4, it can be observed that all coefficients are significant and directly related. All the covariance relationships are significant, which means that indirectly there are variables that share something in common through their random errors (Table 9).

		Coeffici	ent				
Cova	riability		Estima	Standardiz	S.E.	C.R.	<i>p</i> -value
			ted	ted ed			
F1	<>	F2	.178	.836	.017	10.386	***
F1	<>	F3	.082	.873	.014	5.819	***
F1	<>	F4	.104	.684	.017	5.959	***
F2	<>	F3	.091	.790	.012	7.292	***
F2	<>	F4	.122	.656	.017	7.082	***
F3	<>	F4	.063	.761	.013	4.713	***
e5	<>	e6	.074	.305	.017	4.269	***
e2	<>	e5	033	124	.014	-2.431	.015
e1	<>	e2	.058	.241	.017	3.460	***
e1	<>	e4	068	272	.018	-3.879	***

 Table 9. Covariance relationships in confirmatory factor analysis

e2	<>	e3	.076	.173	.024		3.102	.002
Tabl	a 10. <i>In</i>	dicador	es de bon	dad de aj	uste del anál	isis fa	actorial co	nfirmatorio
Name	lama					of	Value	Acceptab
Name					adjustmen	t	Value	le limit*
Norma	lized go	odness-	of-fit inde	ex	NFI		.788	≥ .90
Goodn	ess-of-f	it index			GFI		.951	≥ .90
Compa	rative f	it index			CFI		.891	≥ .90
Tucker	-Lewis	index			TLI		.855	≥ .90
Increm	iental g	oodness	-of-fit ind	lex	IFI		.896	≥ .90
Adjust	ed good	Iness-of	fit index		AGFI		.926	≥ .85
Relativ	e good	ness-of-	fit index		RFI		.718	≥ .90
Mean s	quare e	error of a	approxima	ation	RMSEA		.056	≤ .05
Square	root of	the me	an square	error	RMR		.050	≤ .10

* Byrme (2010). Structural Equation Modeling with AMOS. 2da. Ed. New York. Routledge Taylor & Francis Group

According to the fit indicators, it can be said that the confirmatory factor model is adequate since it meets 3 of the 9 goodness-of-fit indicators.

3.4 Subsequent reliability analysis

According to the reliability statistics, it can be said that the questionnaire is reliable and presents internal consistency at the global level; however, it is weak in the third and fourth dimensions.

 Table 11. Reliability of the questionnaire of cognitive learning strategies achieved by students

	44		o teachers	•				
Daliability	Variable	Dimension						
Reliability	variable	1	2	3	4			
Cronbach's	.867	.787	.799	.573	.518			
Alpha	.007	.707	./ 77		.510			
Omega	.878	.802	.811	.600	.529			
Coefficient	.070	.002	.011	.000	.329			
Theta	.737	.858	.876	.789	.809			
Coefficient	.131	.010	.070	.707	.009			
# items	15	6	4	3	2			

addressed to teachers.

The final version of the meta-regulated learning teacher management scale is presented below.

# ****

		_	Alm		Almo	
Dimension	ltems	Nev	ost	Some	st	Alway
Dimension	items		neve	times	alway	S
			r		S	
Factor 1:	7. I promote that students can					
Self-regulation	detect needs and opportunities					
teaching	for improvement during their					
management	performance in class.					
	9. I plan activities with explicit					
	objectives to promote my					
	students' disposition towards					
	their learning.					
	11. The evaluation and feedback					
	design allows my students to					
	detect their difficulties and					
	potentialities at the moment of					
	learning and to make decisions					
	for continuous improvement.					
	12. I identify my students'					
	expression of emotions by raising					
	questions and recalling past					
	events on the topic covered in					
	class.					
	13. When I introduce new					
	knowledge, I start with relevant					
	tasks and problems that motivate					
	my students to learn, self-assess					
	and self-regulate their learning					
	process.					
	14. I promote the motivation of					
	my students to develop and					
	improve their competencies.					
Factor 2:	21. I design assignments and					
	activities for my students to					

 Table 11. Teaching management scale of meta-regulated learning

* * * * * * * * * *	
Meta-	reflect on during the
reflection	development of the assignments.
teaching	22. I develop activities with a
management.	large amount of information for
	my students to summarize or find
	key ideas and make effective
	decisions when performing them.
	23. Based on what my students
	have learned, I carry out
	activities for them to make
	deductions and comparisons with
	other real contexts.
	24. During class, I encourage my
	students to achieve a new
	reinterpretation and appreciation
	of new knowledge, introducing
	them to other contexts.
Factor 3:	6. I constantly provide examples
Collaborative	to my students during teamwork
teaching	so that they understand their
management	learning achievement and design
	collective strategies to reach
	these goals.
	15. I promote small work teams
	and identify the performance of
	my students through the activities
	they perform.
	18. I make it easy for students to
	group freely and promote the
	internal management of the work
	team so that they can achieve the
	development of a task together.
Factor 4:	development of a task together.4. I identify together with my
Factor 4: Meta-cognition	
	4. I identify together with my

5. The activity guides I develop connect theory with practice through explicit directions for my students.

Note: The instrument was validated in higher education teachers.

#### 4. DISCUSSION AND CONCLUSIONS

The instrument analyzed is a valuable tool in that it evaluates the teacher's management of the student's meta-regulated learning; In the current era, it is a challenge to ensure that the students of generation Z, "centennials" or "The App Generation" can reflect on their learning; therefore, identifying the key aspects so that the teacher can dynamize processes of self-regulation, meta-reflection, cola-boration and metacognition, offers ample possibilities to ensure that students become the main leaders of their learning and clarifies the role of the teacher in this process.

Several instruments that relate teachers, students and learning are based on students' perception [40]; therefore, the present study opens a space for analysis from the teachers' perspective, considering that this instrument can provide teachers with important information to implement preventive or intervention actions to improve students' intention to learn, while they can use them to evaluate their own teaching and to investigate their own classrooms [40].

Related to the learning process, a recent study found that student experience and satisfaction scored high with an average of over 75%, however, as the authors state, there is still room for improvement, as more research is needed to examine how students perceive various components of "satisfaction" within learning environments [41].

The present study assumes as a solid approach that "teaching students in reflection requires specific teaching competencies" [42, p.155], hence, the bet is placed on this teaching management tool for meta-regulated learning that offers these alternatives to teachers to favorably influence in dynamizing the process of learning reflection in their students.

The study cited above developed and validated a rating scale focused on students' perceptions of their teachers' competencies to foster reflective learning in small groups and found as results the need to support self-knowledge; create a safe environment and encourage self-regulation [42].

Other studies provide valuable insights into the perceptions of university students and teachers on the roles of teachers in promoting self-directed learning [43], recognizing the need to train teachers to personalize learning support [44]. Thus, it is required to delve more and more deeply into the teaching style of university teachers and the agent engagement of their students in learning as an integrated perspective of the achievement goal theory [45], while continuing to deepen the role of university tutors as facilitators of reflective learning of students [46].

A revealing study shows the influence of teachers on motivation and academic stress and its effect on the learning strategies of university students [47], which continues this line that highlights the important mediating and moderating role of the teacher; in turn, the importance of autonomy in scaffolding as learning in the negotiation of teacher-student meanings in a university classroom is recognized [48] and advances in how teachers support the development of lifelong learning of university students are acknowledged [49]. This requires continuing to examine the process of learning to learn in the university from the perspectives of faculty and students [50]. In this regard a recent study with had as its main purpose to compare the effectiveness of Student-Centered Learning over Teacher-Centered Learning, which has been implemented to teach economics subjects in a private university in Sarawak [51]. The study shows that Student-Centered Learning has proven to be a more effective way in students' learning and that teachers could adopt the blended methodology but more inclined to student-centered teaching and learning [51, p. 147].

Finally, it is concluded that, of the five factors proposed at the theoretical level for teacher management of meta-regulated learning, the statistical analysis allowed the resignification of four final factors: 1.-teacher management of self-regulation, 2.-teacher management of meta-reflection, 3. teaching management of collaboration and 4.- teaching management of metacognition, disseminating cognition as a transversal element in the whole construct, which is associated with the theoretical foundations of the study when it is stated that "cognition is intrinsically intertwined with learning" [52, p.10 Cognition and learning are central concepts in educational psychology [53] that find effective dynamizes in creative self-efficacy, psychological empowerment and motivation for self-learning [54]. This opens a new scenario in the post-pandemic stage, since teachers no longer manage learning only in face-to-face contexts, but it is increasingly common to perform in virtual environments, so they must be prepared to dynamize online learning in a collaborative manner [55], making use of learning analytics techniques to enhance interaction in learning ecosystems [56], and for this purpose recent research is committed to the integration of technology, pedagogy, and content, concretized in the TPACK model [57], to this end, the paradigm of didactic intervention will be transformed, orienting it towards more active mixed methodologies [58]. All this calls for rethinking educational research and practice in universities, considering that it will be easier for teachers to manage metaregulated learning if they consolidate themselves as scientific research leaders committed to the positive transformation of the university context [59]. However, understanding that universities have their own dynamics, we call for future studies that can determine the construct validity of the scale of teacher management of meta-regulated learning in other contexts at other educational levels. Informed Consent Statement: Informed consent was obtained from all subjects involved in the study. Data Availability Statement: The data used are available, please contact the corresponding author. Conflicts of Interest: The authors declare no conflict of interest.

#### REFERENCES

- [1] Mollo-Flores, M.E.; Deroncele-Acosta, A. Meaningful Learning: towards a Meta-regulated Learning model in Hybrid Education. Proceedings - 2021 16th Latin American Conference on Learning Technologies, LACLO 2021, pp. 52-59. DOI: 10.1109/LACLO54177.2021.00066
- [2] Ausubel, D. Algunos aspectos psicológicos de la estructura del conocimiento. En Elam, S. (Comp.) La educación y la estructura del conocimiento. Investigaciones sobre el proceso de aprendizaje y la naturaleza de las disciplinas que integran el curriculum; El Ateneo, **1973**; pp. 211-239.
- [3] Ausubel, D. Adquisición y retención del conocimiento. Una perspectiva cognitiva. Paidós, 2002.
- [4] Ausubel, D., Novak, J.; Hanesian, H. Psicología educativa. Un punto de vista cognoscitivo. Trillas, **1976**.
- [5] Novak, J. Teoría y práctica de la educación. Alianza Universidad, 1988.
- [6] Novak, J. Concept maps and Vee diagrams: two metacognitive tools to facilitate meaningful learning. Instructional Science, **1990**, 19(1), 29-52. DOI:10.1007/bf00377984
- [7] Novak, J. Learning, Creating and Using Knowledge. Lawrence Erlbaum Associates, 1988.
- [8] Yslado, R. M., Ramirez, E. H., García, M. E. & Arquero, J. L. Work climate and burnout in university professor. Revista Electrónica Interuniversitaria de Formación del Profesorado, 2021. 24(3). 101-114. DOI: 10.6018/reifop.476651.
- [9] Ferreira, M., Olcina-Sempere, G.; Reis-Jorge, J. Teachers as Cognitive Mediators and Promotors of Meaningful Learning. Revista Educación, **2019**, 43(2), 603-614. DOI: 10.15517/revedu.v43i2.37269
- [10] Schunk, D.; Zimmerman, B. Self-regulation in education: retrospect and prospect. En D. H. Schunk y B. J. Zimmerman (Eds.), Self-regulation of learning and performance. Issues and educational applications. Erlbaum, 1994.
- [11] Schunk, D.; Zimmerman, B. Modeling and self-efficacy influences on children's development of self-regulation. En K. Wentzel, J. Juvonen (eds). Social motivation: Understanding children's school adjustment. Cambridge University Press, **1996**.
- [12] Kärki, T., Keinänen, H., Tuominen, A., Hoikkala, M., Matikainen, E.; Maijala, H. Meaningful learning with mobile devices: pre-service class teachers' experiences of mobile learning in the outdoors. Technology, Pedagogy and Education, 2018, 27(2), 251-263. DOI:10.1080/1475939x.2018.1430061
- [13] Tsai, Meng-Chuan, Shen, Pei-Di, Chen, Wen-Yu, Cheng Hsu, Lynne; Tsai, Chia-Wen. Exploring the efects of web-mediated activity-based learning and meaningful learning on improving students' learning efects,

learning engagement, and academic motivation. Universal Access in the Information Society, **2020**, 19(4), 783-798. DOI: 10.1007/s10209-019-00690-x

- [14] Davis, K. Introduction. Engaged Language Policy and Practices. Language Policy, 2014, 13(2), 1-18. DOI:10.1007/s10993-013-9296-5
- [15] Anwar, Y. The Multilevel Inquiry Approach to Achieving Meaningful Learning in Biochemistry Course. Biochemistry and Molecular Biology Education, **2019**, 48(1), 28-37. DOI:10.1002/bmb.21309
- [16] Fuster-Guillén, D., Ocaña-Fernández, Y., Salazar, D.E. & Ramirez, E. H. Human development and family integration: Study from the comprehensive service of the elderly in Peru. Revista Venezolana de Gerencia. 2020. 25(90). 477 - 490. DOI: 10.37960/rvg.v25i90.32392.
- [17] Chrobak, R. El aprendizaje significativo para fomentar el pensamiento crítico. Archivos de Ciencias de la Educación, **2017**. 11(12), 1-12. DOI: 10.24215/23468866e031
- [18] Cañas, A., Hill, G., Carff, R., Suri, N., Lott, J., Gómez, G., Eskridge, T., Arroyo, M.; Carvajal, R. Cmap-Tools: A knowledge modeling and sharing environment. Proc. of the First Int. Canf. on Concept Mapping, 2004, 125-135.
- [19] Cañas, A.; Carvalho, M. Mapas Conceituais e IA: uma união improvável? Revista Brasileira de Informática na Educação, **2005**, 13(1), 9-19. DOI: 10.5753/rbie.2005.13.1.%25p
- [20] Cañas, A.; Novak, J. Concept mapping using CmapTools to enhance meaningful learning. In Knowledge cartography, 2014; pp. 23-45. Springer. DOI: 10.1007/978-1-84800-149-7_2
- [21] Ramírez, E. H., Espinoza, M. R., Esquivel, S. M. & Naranjo, M. E. Emotional Intelligence, competencies and performance of the university professor: Using the SEM-PLS partial least squares technique. Revista Electrónica Interuniversitaria de Formación del Profesorado. 2020. 23(3), 99 - 114. DOI: 10.6018/reifop.428261
- [22] Galloway, K.; Bretz, S. Using cluster analysis to characterize meaningful learning in a first-year university chemistry laboratory course. Chemistry Education Research and Practice, 2015, 16(4), 879-892. DOI: 10.1039/C5RP00077G
- [23] Agra, G., Formiga, N., Oliveira, P., Costa, M. Fernandes, M.; Nóbrega, M. Analysis of the concept of Meaningful Learning in light of the Ausubel's Theory. Revista Brasileira de Enfermagem, 2019, 72(1), 248-255. DOI: 10.1590/0034-7167-2017-0691
- [24] Trifone, J. To What Extent Can Concept Mapping Motivate Students to Take a More Meaningful Approach to Learning Biology? Science Education Review, **2006**, 5(4), 1-23.
- [25] Panadero, E., Jonsson, A.; Botella, J. Effects of self-assessment on self-regulated learning and self-efficacy: Four meta-analyses. Educational Research Review, 2017, 22, 74-98. DOI: 10.1016/j.edurev.2017.08.004
- [26] Duarte-Herrera, M., Apolin, D.; Lozano, D. Dispositional Strategies and Meaningful Learning in Virtual Classrooms. Revista Educación, **2019**, 43(2), 588-602. DOI: 10.15517/revedu.v43i2.34038
- [27] Petrovic, K., Hack, R.; Perry, B. Establishing meaningful learning in online nursing postconferences: A literature review. Nurse Educator, 2020, 45(5), 283-287. DOI: 10.1097/NNE.00000000000762
- [28] Brito, J., Amorim, R., de Sousa Monteiro, B., Gomes, A.; de Melo Filho, I. Effectiveness of practices with sensors in engaging in meaningful learning in higher education: Extending a framework of ubiquitous learning. IEEE Frontiers in Education Conference (FIE), 2015; pp. 908-911. DOI:10.1109/fie.2015.7344170
- [29] Chan, P., Kim, S., Garavalia, L.; Wang, J. Implementing a strategy for promoting long-term meaningful learning in a pharmacokinetics course. Currents in Pharmacy Teaching and Learning, 2018, 10(8), 1048-1054. DOI: 10.1016/j.cptl.2018.05.013
- [30] Niknam, M.; Thulasiraman, P. (2020). LPR: A bio-inspired intelligent learning path recommendation system based on meaningful learning theory. Education and Information Technologies, 25(5), 3797-3819. DOI:10.1007/s10639-020-10133-3
- [31] Osses, S.; Jaramillo, S. Metacognición: un camino para aprender a aprender. Estudios Pedagógicos, **2008**, 34(1), 187-197. DOI: 10.4067/S0718-07052008000100011
- [32] Zimmerman, B. A Social Cognitive View of Self-Regulated Academic Learning. Journal of Educational Psychology, **1989**, 81(3), 329-339.
- [33] Panadero, E., Andrade, H.; Brookhart, S. Fusing self-regulated learning and formative assessment: a roadmap of where we are, how we got here, and where we are going. The Australian Educational Researcher, **2018**, 45, 13-31. DOI: 10.1007/s13384-018-0258-y
- [34] Roselli, N. El aprendizaje colaborativo: Bases teóricas y estrategias aplicables en la enseñanza universitaria. Propósitos y Representaciones, **2016**, 4(1), 219-280. DOI: 10.20511/pyr2016.v4n1.90

- [35] Martínez, F. Impacto de las pruebas en gran escala en contextos de débil tradición técnica: Experiencia de México y el grupo Iberoamericano de PISA. Relieve, **2016**, 22(1), 1-12. DOI: 10.7203/relieve.22.1.8244
- [36] Sadik, A. Digital storytelling: a meaningful technology-integrated approach for engaged student learning. Educational Technology Research and Development, 2008, 56(4), 487-506. DOI:10.1007/s11423-008-9091-8
- [37] Hanani, N. Meaningful Learning Reconstruction for Millennial: Facing competition in the information technology era. International Conference on Environment and Technology, IOP Conf. Ser.: Earth Environ. Sci. 469 012107, 2020. DOI:10.1088/1755-1315/469/1/012107
- [38] Kreijns, K., Kirschner, P.; Jochems, W. Identifying the pitfalls for social interaction in computer-supported collaborative learning environments: A review of the research. Computers in Human Behavior, 2003, 19(3), 335- 353. DOI:10.1016/S0747-5632(02)00057-2
- [39] Wang, H., Wang, N.; Yeung, D. Collaborative deep learning for recommender systems. In KDD '15: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2015; pp. 1235-1244. DOI: 10.1145/2783258.2783273
- [40] Doménech-Betoret, F., Gómez-Artiga, A., Abellán-Roselló, L.; Rocabert-Beút, E. MOCSE Centered on Students: Validation of Learning Demands and Teacher Support Scale. Frontiers in Psychology, 2020, 11, 582926. DOI: 10.3389/fpsyg.2020.582926
- [41] Cant, R., Ryan, C.; Cooper, S. Nursing students' evaluation of clinical practice placements using the Clinical Learning Environment, Supervision and Nurse Teacher scale A systematic review. Nurse Education Today, 2021, 104,104983. DOI: 10.1016/j.nedt.2021.104983
- [42] Schaub-De Jong, M.A., Schönrock-Adema, J., Dekker, H., Verkerk, M.; Cohen-Schotanus, J. Development of a student rating scale to evaluate teachers' competencies for facilitating reflective learning. Medical Education, **2011**, 45(2), 155-165. DOI: 10.1111/j.1365-2923.2010.03774.x
- [43] Lai, C., Yeung, Y.; Hu, J. University student and teacher perceptions of teacher roles in promoting autonomous language learning with technology outside the classroom. Computer Assisted Language Learning, 2016, 29(4), 703-723. DOI: 10.1080/09588221.2015.1016441
- [44] Arthars, N., Dollinger, M., Vigentini, L., Liu, D.Y.T., Kondo, E.; King, D.M. Empowering teachers to personalize learning support: Case studies of teachers' experiences adopting a student- and teacher-centered learning analytics platform at three Australian universities (Book Chapter). Utilizing learning analytics to support study success, 2019; pp. 223-248. Springer. DOI: 10.1007/978-3-319-64792-0_13
- [45] Jiang, A.L.; Zhang, L.J. University Teachers' Teaching Style and Their Students' Agentic Engagement in EFL Learning in China: A Self-Determination Theory and Achievement Goal Theory Integrated Perspective. Frontiers in Psychology, 2021, 12, 704269. DOI: 10.3389/fpsyg.2021.704269
- [46] Diez-Fernández, Á.; Domínguez-Fernández, R. El tutor universitario como impulsor del aprendizaje reflexivo de los alumnos durante las prácticas docentes. Estudios Pedagógicos, 2018, 44(2), 311-328. DOI: 10.4067/S0718-07052018000200311
- [47] Trigueros, R., Padilla, A., Aguilar-Parra, J.M., Lirola, M.J., García-Luengo, A.V., Rocamora-Pérez, P.; López-Liria, R. The influence of teachers on motivation and academic stress and their effect on the learning strategies of university students. International Journal of Environmental Research and Public Health, 2020, 17(23), 1-11. DOI: 10.3390/ijerph17239089
- [48] Danli, L. Autonomy in Scaffolding as Learning in Teacher-Student Negotiation of Meaning in a University EFL Classroom. Chinese Journal of Applied Linguistics, **2017**, 40(4), 410-430. DOI: 10.1515/cjal-2017-0024
- [49] Shaikh, A. A., Lakshmi, K. S., Tongkachok, K., Alanya-Beltran, J., Ramirez-Asis, E., & Perez-Falcon, J. Empirical analysis in analysing the major factors of machine learning in enhancing the e-business through structural equation modelling (SEM) approach. International Journal of System Assurance Engineering and Management, 2022. 1-9. DOI: 10.1007/s13198-021-01590-1
- [50] García-García, F.J., Moctezuma-Ramírez, E.E., López-Francés, I.; Pérez, C.P. Aprender a aprender en la universidad: Perspectivas del profesorado y de los estudiantes. Estudios Sobre Educación, 2021, 40, 103-126. DOI: 10.15581/004.40.103-126
- [51] Lau, H.S. Comparing the effectiveness of student-centred learning (SCL) over teacher-centred learning (TCL) of economic subjects in a private university in Sarawak. International Journal of Innovation, Creativity and Change, 2020, 10(10), 147-160.
- [52] Davis, K. Introduction. Engaged Language Policy and Practices. Language Policy, 2014, 13(2), 1-18. DOI:10.1007/s10993-013-9296-5
- [53] Greeno, J.G., Collins, A.M.; Resnick, L.B. Cognition and learning (Book Chapter). Handbook of Educational Psychology, 2013, 15-46. DOI: 10.4324/9780203053874-8

- [54] Deroncele Acosta, A., Anaya Lambert, Y., López Mustelier, R.; Santana González, Y. Motivación en empresas de servicios: Contribuciones desde la intervención psicosocial. Revista Venezolana De Gerencia, 2021, 26(94), 568-584. DOI: 10.52080/rvgluzv26n94.7
- [55] Palacios-Núñez, M., Deroncele-Acosta, A.; Goñi Cruz, F. F. (2022). Aprendizaje colaborativo en línea: factores de éxito para su efectividad. Revista Conhecimento Online, 2022, 2, 158-179. DOI: 10.25112/rco.v2.2925
- [56] Oliva Córdova, L.M., Amado-Salvatierra, H.R., Villalba Condori, K.O. An Experience Making Use of Learning Analytics Techniques in Discussion Forums to Improve the Interaction in Learning Ecosystems. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Designing Learning Experiences. HCII 2019. Lecture Notes in Computer Science, 2019, vol 11590. Springer, Cham. DOI: 10.1007/978-3-030-21814-0_6
- [57] Alemán-Saravia, A.C.; Deroncele-Acosta, A. Technology, Pedagogy and Content (TPACK framework): Systematic Literature Review. Proceedings 2021 16th Latin American Conference on Learning Technologies, LACLO 2021, pp. 104-111. DOI: 10.1109/LACLO54177.2021.00069
- [58] Hidalgo Benites, L.E.; Villalba-Condori, K. O.; Arias-Chávez, D.; Berrios-Espezua, M.; Cano, S. Classroom flipped in a virtual platform for the development of competences. Case study: Applied research course. Campus Virtuales, **2021**, 10(2), 185-193.
- [59] Vargas-Pinedo, M. E., Mollo-Flores, M. E., Alemán-Saravia, A. C.; Deroncele-Acosta, A. Liderazgo científico investigativo del docente para la transformación del contexto universitario. Revista Venezolana De Gerencia, 2022, 27(99), 1151-1168. DOI: 10.52080/rvgluz.27.99.19