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Abstract: Of all major vegetable oils, palm oil remains extremely productive crop. Malaysia is 

currently the world’s second-largest producer and also the world's second-largest exporter of palm 

oil. However, the sector most vulnerable to climatic condition is agriculture. Extreme climatic events 

include high temperature levels, drought and flash floods. Such events affect oil palm growth and 

promote plant disease which then, increase the palm oil price. Previous understandings suggest that 

the changing climate and palm oil prices follow similar behaviour patterns. Therefore, this study aims 

at exploring the asymmetric relations between climate change and palm oil prices from 1964-2016. A 

nonlinear autoregressive distributed lag (NARDL) cointegration methodology was employed for the 

estimations. Overall, the results suggest the presence of a significant and asymmetric relation 

between palm oil prices and temperature in the long run, the impact of a fall in the temperature is 

more pronounced than when the temperature increases. In contrast, the responses of the palm oil 

prices to the rainfall show a symmetric but insignificant in the long run. Such findings are of great 

importance in showing that palm oil price reacts differently to rising and falling temperature, but not 

for rainfall. Therefore, long-term sustainability requires a diverse and robust technological and 

knowledge base to enhance palm oil productivity and efficiency in order to reduce the vulnerability of 

palm oil to climate change. 
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1. INTRODUCTION 

Compared to alternative vegetable oils, palm oil remains important due to its crop efficiency, large 

productivity, long life span and oil versatility. According to USDA (2019), in 2018/19 palm oil 

contributed 36.40% of the world's vegetable oil supply. In terms of efficiency and high productivity, the 

average annual palm oil yield is approximately 4.2t/ha compared to 0.4 and 1.2t/ha for soybean and 

rapeseed, respectively (Tan, Lee, Mohamed, & Bhatia, 2009). In other words, oil palm yields indeed 

ten times and four times more productive than soybean and rapeseed yields on a per hectare basis. 

The annual global production of palm oil rose by 15 times to nearly 74 million MT in 2018 from 4.9 

million MT in 1980; while Indonesia and Malaysia nominate the bulk of the world palm oil production 

with about 70%-80% in that period (USDA, 2019). For oil versatility, it offers a broad range of benefits 

including food products, cosmetics, biofuel and engine lubricants. In fact, food consumption 

dominated around 80%- 90% of the production of palm oil while the rest was channelled to industries 

(Shimizu & Desrochers, 2012). Besides that, palm oil requires a relatively lower production cost than 

other vegetable oils (Shimizu & Desrochers, 2012; Tan et al., 2009). 
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Currently, Malaysia consistently produces and exports almost 20 million MT of palm oil annually This 

makes Malaysia the second-largest producer and exporter of palm oil globally (Ubilava & Holt, 2013; 

USDA, 2019). According to the USDA (2019), Malaysia contributed 25% of global palm oil production and 

34% of the global export market after its neighbouring country,  Indonesia, in 2018. Palm oil production 

has benefited greatly millions of smallholder farmers and their families in Malaysia. Contribution of 

agriculture sector in Malaysia's Gross Domestic Product (GDP) is about 7.3% according to latest 

statistics in 2018 (DOSM, 2019). Over the same period, oil palm continues to be the leading driver of 

agriculture growth, makes up 37.9% of GDP for the agriculture sector, followed by other types of 

agriculture namely livestock, fishing forestry and logging, and rubber at 25.1%, 14.9%, 12.5%, 6.9% and 

2.8%, respectively.  

However, the earth faces potentially disastrous impacts of global warming. Growing emission of carbon 

dioxide (CO2) leads to irreversible global climate change. The changing climate will probably increase 

the likelihood of extreme weather, warmer temperature, frequency and intensity of rainfall and 

frequency and severity of extreme events (Wheeler & von Braun, 2013). According to the 5th 

Assessment Report of Intergovernmental Panel on Climate Change (IPCC), the global mean 

temperature rose by 0.85°C between 1880 and 2012 while the global mean average sea level increased 

by 0.19 m from 1901 to 2010. In comparison to 1986-2005, the IPCC predicts that further rise in mean 

global temperature rise between 1 to 2°C by 2065 and 1 to 3.7°C by 2100; while projected change in 

global average sea level to be 0.24 to 0.30m by 2065 and 0.40 to 0.63m by 2100 (Pachauri et al., 

2014). Out of the 30 top emitters, Malaysia stands out to be the biggest emitter of CO2, a 221% rise 

between 1990 and 2004 (Watkins, 2007). In 2014, around 243 million MT of CO2 were emitted or 8.1 

MT/person in Malaysia (WDI, 2019). 

If climate change continues, agricultural lands become not suitable for cultivation and hence reduce 

crop yields area (Murad, Molla, Mokhtar, & Raquib, 2010). For instance, Sub-Saharan Africa, South East 

Asia and South Asia may suffer from the crop yields failure and production losses if the global warming 

causes temperature increases of above 1.5°C to 2°C (Schellnhuber et al., 2013). At a country like 

Malaysia, the rice production is predicted to experience a reduction in  rice yield of 0.36t/ha resulting 

from a rise in temperature by 2°C, and this is equivalent to annual economic loss of RM162.531 million 

(Vaghefi, Shamsudin, Makmom, & Bagheri, 2011). Similarly, Zainal et al. (2012) revealed that an 

increase in rainfall and temperature has an adverse impact on palm oil production and thereby reduces 

the annual net revenue. For instance, the marginal impact calculations suggest that net revenue 

decreases by RM 44.52 (Peninsular), RM 45.60 (Sabah) and RM 37.70 (Sarawak) with every 1°C 

increase of temperature. Crops production is responsive to the climatic conditions and consequently 

influences the price movement of agricultural products (Bandara & Cai, 2014; Brunner, 2002; 

Nsabimana & Habimana, 2017; Ubilava & Holt, 2013). Nevertheless, it has been argued that the 

climate change, i.e., rainfall, and El Nino southern oscillation (ENSO) and crop or vegetable oil prices 

follow asymmetric behaviour patterns (Nsabimana & Habimana, 2017; Ubilava & Holt, 2013). 

The potential impacts of uncertain weather and climatic conditions on palm oil production are closely 

related. Extreme weather conditions are likely to have an adverse effect on palm oil production in the 

leading palm oil producing countries such as Indonesia and Malaysia and thus, affect the palm oil prices 

(Ubilava & Holt, 2013). In Malaysia, many studies as such assumed that the link between climate 

changes and palm oil production (or prices) is linear ( Ab Rahman, Abdullah, Balu, & Shariff, 2013; Ab 

Rahman, Abdullah, & Shariff, 2012; Adnan, 2015; Hassan, Ahmad, & Balu, 2018; Kamil & Omar, 2016). 

Nevertheless, climate change is found to have a significant nonlinear effect on net revenue from oil 

palm production (Zainal et al., 2012) and on food price (Wong, Lee, & Wong, 2019). Additionally, 

Wong, Lee, and Wong (2019), concluded that the explanation may be misleading if only linear impacts 

of climate change on crop production are captured. Therefore, this study aims at examining the 

possible asymmetric effects of climate changes on palm oil prices in Malaysia over the period of 1964 – 

2016. 
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2. LITERATURE REVIEW 

The effects of climate change on crop production has been discussed extensively (Challinor et al., 

2014; Knox, Hess, Daccache, & Wheeler, 2012; Lobell & Gourdji, 2012; Peng et al., 2004; Rosenzweig 

& Parry, 1994; Schellnhuber et al., 2013; Schlenker & Lobell, 2010; Schlenker & Roberts, 2009; White, 

Hoogenboom, Kimball, & Wall, 2011). Referring to a report of World Bank (Schellnhuber et al., 2013), 

major crop yields for instance, rice, wheat, maize are affected as a result of extreme high 

temperatures, affecting the food security negatively. According to White et al. (2011), the studies on 

wheat, maize, soybean and rice were the highest at 170 papers out of a total of 221 peer-reviewed 

studies, while the papers on the USA and Europe region contributed 55 papers and 64 papers 

respectively. Similarly, Knox et al. (2012) collected the findings of the impacts of changing climate on 

the crop yields from a systematic review and a meta-analysis in 52 publications from an initial screen 

on 1144 studies. They suggested that the average change of eight major crop yields in Africa and South 

Asia is projected to be -8% by 2050. Specifically, the average yield changes are estimated to be -17%, -

15% and -10% and -5% for wheat, sorghum, millet and maize, respectively across Africa; while across 

South Asia, the mean change in yield of maize and sorghum are estimated to be -16% and -11%, 

accordingly.  

Although great efforts have been made continuously to maintain a stable food production, agriculture 

remains highly vulnerable to weather particularly in developing economies since the greenhouse 

farming is yet to be formed (Nsabimana & Habimana, 2017). According to Rosenzweig and Parry (1994), 

climate change has led to an imbalance of cereal production between developed and developing 

nations but developing nations are expected to receive more effects of the climate change. For 

instance, Haile, Wossen, Tesfaye, and von Braun (2017) projected that climate change may reduce 

crop production globally (such as maize, wheat, rice and soybeans) on average by 9% and by 23 % in 

the 2030s and 2050s, respectively. As a result of climate change impacts, Sub-Saharan Africa (SSA) is 

expected to experience reduction in maize (22%), sorghum (17%), millet (17%), groundnut (18%), and 

cassava (8%) yields by 2050 (Schlenker & Lobell, 2010). 

Since weather conditions and crop production are closely related, it also has a great incidence on 

agricultural product prices (Bandara & Cai, 2014; Brunner, 2002; Nsabimana & Habimana, 2017; 

Ubilava, 2017; Ubilava & Holt, 2013). For instance, chronic floods, high temperature levels, changes in 

precipitation pattern, droughts and heat waves tend to reduce the food production by reducing the 

crop growth, encouraging crop disease and increasing sensitivity of crops to insect pests (CCSP, 2008). 

Thereby, this changing climate leads to a rise in crop prices (Nsabimana & Habimana, 2017). On the 

other hand, South Asia is known as one of the regions that are affected by global climate change the 

most (Bandara & Cai, 2014). They further found that there is an adverse impact of climate change on 

food production in Bangladesh, India, Nepal, Pakistan and Sri Lanka which subsequently, pushes up the 

market food prices. 

In Malaysia, palm oil production will be more vulnerable to uncertain weather conditions (Ab Rahman 

et al., 2013; Adnan, 2015). According to a 2000 MOSTE report, the average annual temperature, 

ranging from 28°C to 31°C, is often favoured for higher fruit production. As the average temperature 

continues to rise and subsequently increases the likelihood of drought, it could be estimated that 

about 12% of the current oil palm areas would be unsuitable for growing oil palm. In the event of 

extreme temperature, an increase in rainfall favours productivity of oil palm provided unless it causes 

prolonged flooding (Fleiss, Hill, McClean, & Lucey, 2017; MOSTE, 2000); while rainfall reduction will 

lead to yield loss (Fleiss et al., 2017). 

The strong occurrences of La Niña and El Niño will affect the palm oil supply from producing countries 

and thereby influence the price movements (Ab Rahman et al., 2013; Kamil & Omar, 2016). An El Niño 

induces severe drought, which leads to low rainfall and high temperatures resulting in a reduction of 

palm oil yield. The El Niño phenomenon could cause various lagged effects which last to two years  

including bunch failure, abortion of floral bud and this is favourable to the formation of male flowers 

production (Adnan, 2015). Thus, the effects of El Niño are not immediate but seem to occur on a long-

term basis. On the other hand, La Niña-induced high rainfall often leads to floods in major planted 

areas, and can disrupt harvesting, collecting activities and fresh fruit brunches of palm oil (Ab Rahman 
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et al., 2013, 2012). During the strong El Niño event in 1997/1998, there has been a massive reduction 

in the production of crude palm oil from 907 000t (1997) to 832 000t (1998) (Hassan et al., 2018) while 

its prices spiked 78% to RM2400/t from RM1350/t (Kamil & Omar, 2016).  

One problem with the previous results in favour of the argument that the changes of climate and crop 

prices follow similar behaviour patterns. Nevertheless, climate change is found to have a significant 

nonlinear effect on net revenue from oil palm production from 1980 to 2010 (Zainal et al., 2012) and 

on food price from 2010 to 2017 (Wong et al., 2019). Wong, Lee, and Wong (2019) concluded that the 

explanation may be misleading if only linear impacts of climate change on crop production are 

captured. As evidenced by Peng et al. (2004) between the period of 1979-2003 at the International 

Rice Research Institute (IRRI) Farm, rice grain yield declined by about 10% for every 1°C increase in 

growing-season minimum temperature during the dry season; while there was no significant effect of 

maximum temperature on crop yield. On a similar note, Nsabimana and Habimana (2017) suggested 

that food crop prices namely cassava roots, beans and potatoes respond asymmetrically to rainfall 

shocks in Rwanda between 2000-2012. On the other hand, Ubilava and Holt(2013) also evidenced that 

there were potential nonlinearities in the El Nino southern oscillation (ENSO) on major vegetable oil 

prices spanning from 1972 to 2010. Their results reveal that positive deviations, El Nino events, result 

in the vegetable oil price increase; whereas negative deviations, La Nina events, result in decrease in 

prices.  

Additionally, a number of empirical studies have focused on the asymmetric effects in food price 

(Ibrahim, 2015), agricultural commodity prices (Nazlioglu, 2011), gold price (Kumar, 2017), gasoline 

price (Lamotte, Porcher, Schalck, & Silvestre, 2012), stock prices (Raza, Jawad Hussain Shahzad, 

Tiwari, & Shahbaz, 2016), housing price (Katrakilidis & Trachanas, 2012) and gasoline and natural gas 

prices (Atil, Lahiani, & Nguyen, 2014). Subsequently, it could be argued that the changes of climate on 

crop prices are likely to follow asymmetric behaviour patterns. Overall, it is worthy to indicate that 

the previous studies have made notable contributions in understanding the response of climate change 

on palm oil prices. However, empirical results have insufficiently accommodated the asymmetric 

effects in the palm oil price. In this regard, more empirical studies are needed to quantify the 

asymmetric pattern of palm oil price. 

 

3. DATA AND METHODOLOGY 

3.3 Data  

The study used annual time series data, covering the period 1964 – 2016. The choice of the length of 

the study period depended solely on data availability. Data on the annual prices palm oil and soybean 

oil) were collected mainly from the World Bank commodity price while the data for climate change 

indicators (temperature and rainfall) were obtained from the World Bank’s climate change knowledge 

portal, respectively.  

 

3.4 The Nonlinear Autoregressive Distributed Lag (NARDL) Cointegration  

Previous studies assumed symmetric relations between palm oil price and climate change. However, 

potential nonlinearities in the palm oil price dynamics were not well captured. To highlight this issue, 

a relatively more advanced cointegration methodology of NARDL cointegration developed by Shin, Yu, 

and Greenwood-Nimmo (2014) was employed. The NARDL cointegration is an extension of the linear 

ARDL model (Pesaran & Shin, 1999; Pesaran, Shin, & Smith, 2001) which allows for estimating 

asymmetric relations in the short-run as well the long-run among variables examined. Following 

Nsabimana and Habimana (2017), the specification for long-run equation of palm oil price can be 

specified as below: 

 

LPOt = θ0 + θ1LCCt + θ2LSOt + et      (1) 

 

where t = 1, …, T, L denotes natural logarithms, PO is the real prices of palm oil (US dollars per metric 

ton), CC is the climate change indicator (temperature (TEM) in °C and rainfall (RF) in mm), SO is the 

real soybean oil prices (US dollars per metric ton) and e is the error term. All the explanatory variables 
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have theoretically expected positive sign except rainfall is expected to be negatively related with 

palm oil price. Based on equation (1), the asymmetric long-run palm oil equation can be specified in 

the following form:  

 

LPO𝑡 = θ0 + θ1
+LCCt

+ + θ1
−LCCt

− + 𝜃2𝐿𝑆𝑂𝑡 + et     (2) 

 

where θ = (θ0, θ1
+, θ1

−, θ2)is a cointegrating vector.  

 

In equation (2), LCCt can be decomposed as: 

LCCt = LCC0 +  LCCt
+ + LCCt

−       (3) 

 

where LCC0 is the initial value, LCCt
+and LCCt

−are the positive and the negative partial sum changes in 

LCCt: 

 

LCCt
+ =  ∑ ∆LCCi

+t
i=1 = ∑ max (∆LCCi, 0)t

i=1      (4) 

LCCt
− =  ∑ ∆LCCi

−t
i=1 = ∑ min (∆LCCi, 0)t

i=1      (5) 

 

Following Shin et al. (2014), equation (2) is associated with the linear ARDL(p,q) model (Pesaran& 

Shin, 1999; Pesaran et al., 2001) which becomes NARDL (p, q) model: 

 

∆𝐿𝑃𝑂𝑡 = 𝛾0  + 𝛽0𝐿𝑃𝑂𝑡−1 + 𝛽1
+𝐿𝐶𝐶𝑡−1

+ + 𝛽1
−𝐿𝐶𝐶𝑡−1

− + 𝛽2𝐿𝑆𝑂𝑡−1    

 + ∑ 𝛼0𝑖∆𝐿𝑃𝑂𝑡−𝑖
𝑝−1
𝑖=1 + ∑ (𝛼1𝑖

+ ∆𝐿𝐶𝐶𝑡−𝑖
+ + 𝛼1𝑖

− ∆𝐿𝐶𝐶𝑡−𝑖
+ + 𝛼2𝑖∆𝐿𝑆𝑂𝑡−𝑖)

𝑞−1
𝑖=0 + 𝜇𝑡  (6) 

 

where θ1
+ = −

β1
+

β0
 and θ2

− = −
β1

−

β0
 represent the long-run impacts of climate increase and climate 

decrease on the palm oil prices. While ∑ α1i
+q−1

i=0  and ∑ α1i
−q−1

i=0  measure the short-run effects of an 

increase in climate and a decrease in climate, respectively on palm oil price. The long-run symmetry 

of the null hypothesis (θ1
+ = θ1

−) and the short-run symmetric of the null hypothesis (α1
+ = α1

−) are 

tested using the Wald test. 

 

4 ESTIMATION RESULTS 

Table 1 reports the descriptive statistics for all the variables. The annual palm oil price ranged from 

the minimum value of $350.48/MT in 1990 to the maximum value of $1777.51/MT in 1974, with an 

annual average value of 806.23/MT. Meanwhile, the annual average soybean price was approximately 

$888.52/MT and reached its peak in 1974 of $2210.86/MT. For climate change indicators, the mean 

annual temperature was 25.5°C, with the highest temperature recorded was 26.4°C in 2016 and the 

lowest temperature recorded was 24.8°C in 1976. The average value of rainfall was 252.6 mm, ranging 

from the lowest rainfall of 208.1886 mm (1990) to the highest rainfall of 311.0 mm occurring in 2008. 

The Jacque-Bera test suggests normality of all the series, except the soybean oil price. 

 

Table 1. Descriptive statistics. 

  PO TEM RF SO   

Mean 806.2314 25.4939 252.5730 888.5203   

Maximum 1777.5090 26.3753 311.0423 2210.8610  

Minimum 350.4799 24.8180 208.1886 425.0146  

Std. Dev. 299.6262 0.3680 24.5273 331.0260  

JB 3.6860 0.9444 1.2845 31.5643 *** 

Notes: *** denotes 1% significance level. JB represents the Jacque-Bera test for normality. 

 

Table 2 displays the results for the Augmented Dickey-Fuller (ADF) and the Phillips-Perron (PP) unit 

root tests. The results indicate that all the series are I(1) at the 1% level, except the rainfall (LRF) is 
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stationary in level. Therefore, the NARDL bounds test was employed to examine the cointegrating 

relation between the variables of the studied since it allows for the variables to be integrated in 

different orders. The computed F-statistic reported in Table 3 is larger than the upper critical bound 

value at 1% (for models 2 and 4), 5% (for model 1) and 10% (for model 3) significance levels, supporting 

cointegration relationship between the variables. 

 

Table 2. Unit root tests results. 

  Level 

  Augmented Dickey-Fuller (ADF) Phillips-Perron (PP) 

  Intercept 
Trend and 

Intercept 
Intercept 

Trend and 

Intercept 

Variable t-Stat.   t-Stat.   t-Stat.   t-Stat.   

LPO -1.9168  -1.6940  -2.5729  -2.4601  

LTEM -0.6594  -5.4064 *** -1.5242  -5.3619 *** 

LRF -5.3069 *** -5.4769 *** -5.2564 *** -5.3751 *** 

LSO -1.6702  -1.4274  -2.4611  -2.5206  

         

  First Difference 

  Augmented Dickey-Fuller (ADF) Phillips-Perron (PP) 

  Intercept 
Trend and 

Intercept 
Intercept 

Trend and 

Intercept 

Variable t-Stat.   t-Stat.   t-Stat.   t-Stat.   

LPO -9.2612 *** -9.2870 *** -9.4160 *** -15.8612 *** 

LTEM 
-6.6995 

*** 
-6.6319 

*** 
-

25.2230 
*** 

-26.4622 
*** 

LRF 
-7.5824 

*** 
-7.4978 

*** 
-

18.8133 
*** 

-18.0921 
*** 

LSO -9.2374 *** -9.2441 *** -8.2971 *** -10.8594 *** 

Notes: *** denotes 1% significance level. 

 

Table 3. Bound tests results. 

Model F-stat.   k Signif. I(0) I(1) 

1. LPO = f(LTEM+ LTEM-  LSO)               4.9982 ** 3 10% 2.5380 3.3980 
    5% 3.0480 4.0020 
    1% 4.1880 5.3280 

2. LPO = f(LTEM+ LTEM-  LRF LSO)      7.1764 *** 4 10% 2.3720 3.3200 
    5% 2.8230 3.8720 
    1% 3.8450 5.1500 

3. LPO = f(LRF+ LRF- LSO) 3.8978 * 3 10% 2.5380 3.3980 
    5% 3.0480 4.0020 
    1% 4.1880 5.3280 

4. LPO = f(LRF+ LRF- LTEM LSO) 5.9374 *** 4 10% 2.3720 3.3200 
    5% 2.8230 3.8720 

        1% 3.8450 5.1500 

Notes: ***, ** and *imply significant at the 1%, 5% and 10% levels, respectively. The optimal lag 

selection is based on Akaike Information Criterion (AIC). 

 

Table 4 contains the estimation results for the four NARDL models with the variables of primary 

interest namely temperature and rainfall split into two partial sums. The first two models report the 

asymmetric impact of temperature on palm oil price while the final two models record the asymmetry 

in palm oil price changes to rainfall. The results suggest several points. First, in the last part of the 

Table 4, all models were found to be free from a battery of diagnostic tests; for instance, no model 
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specification errors, independence, constant variance, normal distribution of residuals except for the 

specification errors (models 2 and 4) as well as heteroscedasticity (model 4) at the 5% level. Moreover, 

CUSUM and CUSUMSQ tests on residuals also highlight that the parameter estimates of NARDL are 

stable over the sample period for all models. 

Second, the lagged error correction term (ECTt−1) carries a negative sign and is highly significant at 

the 1% level which suggests that palm oil price, climate change variables (temperature and rainfall) 

and soybean price are cointegrated. The coefficients of ECT in absolute value are 0.4945, 0.6765, 

0.2333 and 0.5097 for model 1, model 2, model 3 and model 4, respectively, signifying that palm oil 

price converges to equilibrium with the speed of adjustment of between 23.3% and 67.7% annually. 

This is consistent with empirical finding by Hassan et al. (2018), which shows that there was 23.3% 

short-run adjustment towards long-run equilibrium each month. 

Third, the standard Wald tests were employed to test for symmetry in both the short-run (WSR) and the 

long-run (WLR). For models 1 and 2, the Wald test rejects the null hypothesis of short-run symmetry at 

the 1% level while the long-run symmetry is rejected at the 5 % level. The results suggest that palm oil 

price reacts asymmetrically to positive and negative changes of the temperature. Moreover, the long-

run parameter estimates of temperature for LTEM+ ranges from 11.5651 to 12.7340 and for LTEM- 

ranges from 14.4073 to 15.2606 and are statistically significant at conventional level. This concludes 

that a 1% increase in the temperature leads to a 11.57% (model 1) and 12.73% (model 2) rise in palm oil 

price; on the other hand, a 1% decrease in the temperature is associated with a 14.41% (model 1) and 

15.26% (model 2) decrease in the price of palm oil. Specifically, palm oil prices react more strongly to 

negative temperature shocks in response to positive temperature shocks. For comparison’s sake, the 

last model in Table 4 examines both the rainfall and temperature variables simultaneously. Once 

again, the estimated coefficient of temperature reveals a significant positive effect, with a 1% rise of 

temperature yielding an increase of 9.44% on palm oil price. This same finding from models 1, 2 and 4 

reveals that temperature has an explanatory power for palm oil price.  

Fourth, turning to the rainfall (models 3 and 4), the Wald test results confirm the existence of 

asymmetric links between rainfall and palm oil price in the short-run but a weak asymmetric impact 

(only at the 10% level) for model 4 in the long-run. Nevertheless, both positive and negative long-run 

coefficients of rainfall (LRF+ and LRF-) carry the expected negative sign but insignificant in models 3 

and 4. For comparison purposes, model 2 was estimated by considering the two climate change 

variables together; the estimated coefficient on rainfall remains insignificant but negative. Hence, 

palm oil prices display evidence of insignificant symmetric response to positive and negative rainfall 

shocks. 

In line with previous studies, climate change (measured by rainfall, temperature, and CO2) was found 

to have a significant nonlinear effect on net revenue of palm oil production (Zainal et al., 2012) and 

food price (Wong et al., 2019). According to Wong et al. (2019), there is a U-shaped nexus between 

CO2 emissions and food price, indicating that a 10% increase in CO2 emissions leads to a decrease 

in food price of 18.67% in Malaysia. However, if CO2 emissions are above certain threshold value, 

food price will continue to climb up. Likewise, La Niña and El Niño events are also found to have a 

positive impact on crude palm oil prices in Malaysia (Ab Rahman et al., 2013). They suggested that 

crude palm oil prices increase by about 0.03% and 0.02% during the La Niña and El Niño events, 

respectively. As pointed by Ubilava and Holt (2013), the El Niño Southern Oscillation (ENSO)–price 

nexus is characterized as nonlinear dynamics, showing that a positive ENSO shock of El Niño (a negative 

ENSO shock of La Niña) can lead to a reduction (rise) in wheat price. In contrast, Ubilava and Holt 

(2013) suggested that a positive deviation (El Niño events) has contributed to an increase in vegetable 

oil price while a negative deviation (La Niña events) will certainly cause a decrease in vegetable oil 

price. Ubilava (2017) and Ubilava and Holt (2013) provided an interesting finding that the negative 

ENSO shocks have greater impact on price than the positive ENSO shocks. 

Fifth, another concern is the other type of oil, for instance soybean oil is found to be an important 

substitute for the palm oil. The long-run coefficients on soybean oil price for all models are positive 

and are highly significant at the 1% level. This indicates that an increase of 1% in soybean oil price 

raises palm oil price between 1.0% (model 3) and 1.2% (model 2). According to Awad, Arshad, 
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Shamsudin, and Yusof (2007), prices of substitute oils such as soybean oil, corn oil, rapeseed oil and 

sunflower seed oils play a crucial role in stimulating the demand for palm oil in Middle East and North 

African (MENA) countries. Ab Rahman, Abdullah, Balu, and Shariff (2013) reported that soybean oil 

price is considered as one of the important factors in affecting the crude palm oil prices, suggesting 

that with a 10% rise of soybean oil prices, comes an increase of 4.6% on palm oil prices. There are 

many reasons for believing that both vegetable oils are closely related. A profound explanation is the 

high degree substitutability between major vegetable oils (palm oil, soybean, rapeseed and sunflower 

seed oils) traded globally, therefore their prices will likely to converge (In & Inder, 1997). Other reason 

is the vegetable oils have identical characteristics in terms of chemical composition and end-uses, 

sharing common end-users covering from food preparation to manufacturing products for example 

soap, paints and medicines (Ubilava & Holt, 2013). Similarly, soybean oil appears to be a substitute to 

palm oil in most of the Middle East and North African (MENA) countries (Awad et al., 2007). 

 

Table. 4 NARDL results. 

ARDL Error Correction Regression   
 Model 1 Model 2 Model 3 Model 4 

Variable Coeff. t-Stat.   Coeff. t-Stat.   Coeff. 
t-

Stat. 
  Coeff. t-Stat.   

Δ(LPO(-

1)) 

-

0.1419 

-

1.2739 
 -0.122 

-

1.1257 
 -

0.3183 

-

2.489

1 

** 
-

0.0547 

-

1.0639 
 

Δ(LPO(-

2)) 

-

0.4393 

-

4.1197 

**

* 

-

0.3924 

-

3.8809 

**

* 

-

0.2701 

-

2.467

1 

** 
-

0.0091 

-

0.1536 
 

Δ(LPO(-

3)) 
      0.0883 

1.643

7 
 0.0725 1.5164  

Δ(LPO(-

4)) 
      0.1699 3.309 *** 0.1228 2.4651 ** 

Δ(LTEM+) 
-

0.3375 

-

0.1754 
 2.4664 1.2574        

Δ(LTEM+(

-1)) 

-

8.5842 
-3.424 

**

* 

-

8.1963 
-3.272 

**

* 
      

Δ(LTEM+(

-2)) 

-

5.7359 
-2.632 ** 

-

8.1203 

-

3.9199 

**

* 
      

Δ(LTEM+(

-3)) 

-

14.671

6 

-

6.9132 

**

* 

-

11.694

7 

-

4.9801 

**

* 
      

Δ(LTEM+(

-4)) 

-

5.2933 

-

1.9325 
* 

-

3.2302 

-

1.3357 
       

Δ(LTEM+(

-5)) 

-

8.5471 

-

3.2669 

**

* 

-

6.8351 

-

3.0344 

**

* 
      

Δ(LTEM-) 0.8656 0.4228  3.8511 2.0449 *       

Δ(LRF+)       -

0.1299 

-

0.612

2 

 0.054 0.359  

Δ(LRF+(-

1)) 
      -

0.0085 

-

0.047

3 

    

Δ(LRF+(-

2)) 
      -

0.6492 

-

3.425

8 

***    
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Δ(LRF-)       -

0.0606 

-

0.360

6 

 0.0626 0.4774  

Δ(LRF-(-

1)) 
      0.8881 

3.816

8 
*** 0.993 5.3687 

**

* 

Δ(LRF-(-

2)) 
      0.5109 

1.955

3 
*    

Δ(LRF)    0.1285 1.1935        

Δ(LRF(-

1)) 
   0.6647 5.4466 

**

* 
      

Δ(LRF(-

2)) 
   0.3408 2.4586 **       

Δ(LRF(-

3)) 
   0.2505 2.1024 **       

Δ(LRF(-

4)) 
   0.4078 3.1444 

**

* 
      

Δ(LRF(-

5)) 
   0.1967 1.6407        

Δ(LSO) 0.8395 
14.979

2 

**

* 
0.8124 

16.985

2 

**

* 
0.9619 

15.12

2 
*** 0.9864 

18.006

7 

**

* 

Δ(LSO(-

1)) 

-

0.0408 

-

0.3511 
 -

0.1324 

-

1.2424 
 0.2987 

2.259

4 
**    

Δ(LSO(-

2)) 
0.3026 2.6201 ** 0.1802 1.6892  0.3432 

2.897

4 
***    

Δ(LSO(-

3)) 

-

0.1124 

-

2.0933 
** 

-

0.1166 
-2.481 **       

Δ(LSO(-

4)) 
0.0803 1.4669           

ECT(-1) 
-

0.4945 

-

5.3566 

**

* 

-

0.6765 

-

7.3014 

**

* 

-

0.2333 

-

4.699

8 

*** 
-

0.5097 

-

6.3925 

**

* 

             

ARDL Long Run Form   

Variable Coeff. t-Stat.  Coeff. t-Stat.  Coeff. 
t-

Stat. 
 Coeff. t-Stat.  

LTEM+ 
11.565

1 
2.1461 ** 12.734 3.4876 

**

* 
            

LTEM- 
14.407

3 
2.188 ** 

15.260

6 
3.4838 

**

* 
      

LRF    -

0.3465 

-

0.5109 
       

LRF+       -

2.4456 

-

0.961

9 

 -

0.6525 

-

1.2269 
 

LRF-       -

2.4834 

-

0.947

1 

 -

0.5287 

-

0.9602 
 

LTEM          9.4419 2.3407 ** 

LSO 1.0662 
12.257

2 

**

* 
1.1689 

11.994

8 

**

* 
1.0257 

4.694

7 
*** 1.1137 

11.725

6 

**

* 
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C 
-

0.1703 

-

0.2733 
 0.876 0.2759  0.2181 

0.137

6 
 

-

31.172

5 

-

2.3693 
** 

Symmetr

y tests 
            

WSR 
12.900

1 
  

**

* 
8.9694   

**

* 

10.730

1 
  *** 4.6466   ** 

WLR 4.8723  ** 6.0228  ** 0.1066   3.1516  * 

Diagnostic Checks               

R2 0.9617   0.9777   0.9525   0.9413   

Adjusted 

R2 
0.9445   0.9614   0.9344   0.9292   

χ2-BGLM 0.3707   0.7055   0.3947   2.7854   

χ2-ARCH 1.521   18.815

6 
  4.1035   7.8603 **  

χ2-JB 0.5226   1.9056   0.2678   1.7219   

F -RESET 2.4239   3.6924 **  2.0335   3.637 **  

CUSUM √   √   √   √   

CUSUMSQ √     √     √     √     

Notes: ***, ** and *imply significant at the 1%, 5% and 10% levels, respectively. 

5 CONCLUSION 

This study explores the existence of asymmetrical relations between climate change and palm oil 

prices in Malaysia over the period 1964-2016. The nonlinear autoregressive distributed lag (NARDL) 

cointegration techniques was used to simultaneously examine both the long and short-run asymmetric 

responses of the palm oil prices to climate change shocks. There are several conclusions that can be 

drawn from the analysis. First, the findings of palm oil price according to climate change indicators 

vary significantly. Second, palm oil prices appear to respond asymmetrically to rising and falling 

temperature. Third, palm oil prices react more forcefully to negative temperature shocks than to 

positive ones, indicating that the decrease in temperature has a greater impact on the palm oil prices 

than the increase in the long-run. Lastly, palm oil prices respond to rainfall increases and decreases in 

a symmetrical manner but insignificant in the long run. Therefore, the assessment of asymmetric and 

nonlinear framework will lead to more accurate responses of palm oil price. 

The presence of asymmetries in the long-run highlights the need to develop a sustainable agriculture 

and society. In order to reduce the vulnerability of palm oil to climate change, long-term sustainability 

requires a diverse and robust technological and knowledge base to enhance palm oil productivity and 

efficiency. The concept of sustainable plantation practices, applied to all agricultural crops, must 

fulfill the universal criteria of benefiting the 3Ps – profit, people and planet. For instance, during the 

dry weather season, replanting of oil palm plantation needs to be delayed due to insufficient water 

supply. While during high rainfall season, smart and intelligent water management system should be 

implemented. This includes the drainage system and the river reserves which serve as a natural filter 

and protect the banks of waterways.  
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