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 Abstract:  

 Bitcoin (BTC) and other cryptocurrencies have seen an explosion in popular notoriety. Indeed, the 

price of Bitcoin is  known to vary widely. Meanwhile, as Bitcoin's use cases grow, mature, and grow, 

hype and controversy have swirled. As with any design or commodity on the market, bitcoin trading 

and financial instruments have quickly followed the public adoption of bitcoin and continue to grow. 

We will carry out a detailed analysis of Bitcoin prices using time series of the Box-Jenkins model, in 

particular the closing price. Which Traders will then use.  
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1. INTRODUCTION 

      Crypto-currencies is the most effective category in the virtual context whose exchange rate 

analysis is too volatile. The Bitcoin (BTC) price variation as a best-known example in the global Stock 

Exchange system. In recent years this new currency has appeared on the internet. A strange currency 

that is not governed by anyone, a currency that is self-regulated by an algorithm and which is 

moreover anonymous. The virtual currency “Bitcoin” represents the digitization of an anonymous 

aspect which is characterized by its decentralization, i.e. the fact that no State or banking entity 

controls it. Moreover, Bitcoin is not backed by any precious metal like gold. Virtual currency is 

qualified but is really just a simple computer program. In this sense, Bitcoin has its own 

characteristics, the true identity of which remains unknown until today; we therefore refer to the 

pseudonym that has been left to the public “Satoshi Nakamoto”, creator of Bitcoin constant. 

    Also, we attempts to simulate the Bitcoin price based on supply and demand. He explores the 

possibility of using a double logarithmic time model for supply and demand and rejects it due to 

serious heteroscedasticity. Then using the Auto program. ARIMA, he finds a fairly productive 

autoregressive integrated moving average model. After that, it uses the supply and demand forecasts 

built with ARIMA (Box-Jenkins Model) to model the future price of Bitcoin, taking into account that 

its supply volume is known. 

 

2. LITERATURE REVIEW 

2.1. Bitcoin price volatility by different non-parametric methods 

 

     In this work, Auestad et al. (1994) investigated the possibility of identifying nonlinear time series 

patterns using nonparametric methods.  

   Hardle et al. (1995) present a selective review of procedure-based approaches to nonparametric 

model building in time series analysis. They point out that nonlinear, nonparametric time series 

analysis is useful in dealing with the limitations of constant-mean ARIMA models. Hardle et al. (1997) 

review some developments in modern non parametric techniques for time series analysis. 

   Although, manu studies investigate the performance of the stock market. Faff and McKenziet's 

(2007) study concluded that low or even negative return autocorrelations are more likely in situations 
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where: return volatility is high; the price drops significantly; volumes of shares traded are high; and 

the economy is in a recession, Abu Bakar and Rosbi (2017) investigate the reliability of the Box-

Jenkins statistical method for predicting stock price performance for the oil and gas sector in 

Malaysia, Stock found that the performance of Gas Malaysia Berhad can be accurately predicted using 

the Autoregressive Integrated Moving Average (ARIMA) Model of (5,1,5). Like in Malaysia. The 

importance of the forecasting method in the stock market is also presented by Stevenson (2007), 

discusses issues relating to the application of the forecasting method. 

   Although the study by Jadevicius and Huston (2015) suggests that ARIMA is a useful technique for 

assessing general changes in market prices, the results highlight the limitations of using the 

conventional approach to identify the pattern ARIMA best specified in the sample, when the purpose 

of the analysis is to provide forecasts. The results show that ARIMA models can be useful in 

anticipating major market trends; there are substantial differences in the predictions obtained using 

alternative specifications. 

     In total, our work is subdivided into two phases, the first phase consisting in finding if our Bitcoin 

price time series can support the Box-Jenkins ARIMA model, through a series of stationarity tests 

since the latter is a necessary condition for the application of this model, then in a second phase we 

will select the best coefficients of our ARIMA model, in particular through several iterations via the 

choice table of the ARIMA model according to the Akaike information criterion (AIC) work is 

subdivided into two phases, the first phase consisting in finding if our time series of Bitcoin prices 

can support an ARIMA model, through a series of tests, then in the second phase we will select the 

best coefficients of our ARIMA model, in particular a through multiple iterations through the ARIMA 

Model Choice Table according to the Akaike Information Criterion (AIC). 

 

2.2. Time Series: Modeling and Prediction 

 

Volatility can be defined as a measure of the price dispersion of a financial asset. Market participants 

and investors are therefore interested in an accurate estimate of volatility in the cryptocurrency 

market.  

      This is the result of the correlation between volatility and investment returns. It should be noted 

that volatility is not directly observable and therefore there is a growing need for an efficient model 

that can capture price volatility in the cryptocurrency market. As bitcoin has gradually had a place 

in financial markets and portfolio management, time series analysis is a useful tool for studying the 

characteristics of bitcoin prices and returns, and extracting meaningful statistics to predict future 

values. from the Serie.        

 

Virtual currency market: According to Bitcoin supply and demand on date T 

  

We add the condition that the demand is modeled by a function of time: 

 F (t) = Demand = βt. 

    This regular least squares (OLS) regression is a method for finding a linear relationship between 

two or more variables. To start, let's define a linear model as a function X, which equals Y with an 

error:  Y = βX + ε ; where Y is a dependent variable, X is an independent variable, ε is the magnitude 

of the error, and β is multiplier X. The OLS task is to print the value β in order to minimize ε. 
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Figure 1: The relationship of demand to time seems potentially exponential 1. 

    
2.3. The ARMA Model  

 

     The stationarity of a series (Zt) would normally follow an autoregressive moving average pattern 

of orders p and q, normally with the designation ARMA (p, q) which is deemed to be formed by two 

headings namely: 

• Autoregressive models (AR)   

It is one of the methods used to model univariate time series data, where the current observed value 

is assumed to be a function of past values plus a random shock. The process {𝑋𝑡} is said to be 

autoregressive of order p, denoted AR (p) if, 

𝑋𝑡 = 𝜑1𝑋𝑡−1 + 𝜑2𝑋𝑡−2 +     … … … . . 𝜑𝑝𝑋𝑡−𝑝 + 𝜀𝑡 , {𝜀𝑡 }~𝑁(0, 𝜎2)                                     (𝟏) 

          𝑋𝑡 − 𝜑1𝑋𝑡−1 − 𝜑2𝑋𝑡−2 −    … … … . . 𝜑𝑝𝑋𝑡−𝑝 = 𝜀𝑡  

     Or (1- φ1L1 - … - φP Lp) 𝑋𝑡 = 𝜀𝑡  

    So an autoregressive model is simply a linear regression of the current value in the series against 

one or more previous values in the series. Therefore, we can easily determine current production, 

but the weakness of the autoregressive model is that past disturbances are not taken into account. 

• Moving average (MA)  

         Another approach used in univariate time series modeling is the autoregressive model, in which 

the observed time series depends on the weighted linear sum of past random shocks. Therefore, the 

process{ 𝑌𝑡}  is said to be a moving average MA (q) d of order q                               si 𝑌𝑡 = 𝜁𝑡– 𝜃1𝜁𝑡−1 – 

𝜃𝑘𝜁𝑡−2 - … - 𝜃𝑞𝜁𝑡−𝑞 , {𝜁𝑡 }~𝑁(0, 𝜎2)                                                     (𝟐) 

   Or     (1- 𝜃1L1 - … - 𝜃𝑞 Lq ) 𝜁𝑡  = 𝑌𝑡 

- ARMA (p, q) models: Another useful time series model is formed by combining the MA(q) and AR(p) 

processes. An ARMA (p,q) model comprises according to its name two components: the weighted sum 

of past values (autoregressive component) and the weighted sum of past errors (moving average 

component). 

  

Then, the process Zt is an ARMA process (p, q) if: (1- φ1L1 - … - φP Lp) 𝑋𝑡     = (1 −  𝜃1L1 − … −

 𝜃𝑞 Lq ) 𝜁𝑡     (3) is said to be a sequence of random variables, with zero mean and constant variance, 

normally called the white noise process (α and β being constant).  

 

This means that with p = 0, relation (3) becomes a moving average model of order q and with a 

designated MA (q). With q = 0, the process will then become an autoregressive process of order p, 

 
1 https://newdaycrypto.com/fr/supply-and-demand-model-for-bitcoin-price/ 
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denoted by AR (q). A time series 𝜁t  is said to be a sequence of random variables, with zero mean and 

constant variance, normally called a white noise process (α and β being constant).  

 

This means that with p = 0, relation (3) becomes a moving average model of order q and with a 

designated MA (q). With q = 0, the process will then become an autoregressive process of order p, 

denoted by AR (q). A time series (Zt) is called an ARIMA model of order (p, d, q), it is the average of 

the autoregressive integrated moving average: 

𝛷(β)𝜕𝑑𝑋𝑡 = 𝜃(β)𝜁𝑡                                                                                       (3) 

The ARIMA process is characterized by three important values: p: is the order of the autoregressive 

component, d: the number of differences needed to transform the not stationary series into a 

stationary ARMA process (p,q) and q: the order of moving average. 

 

3. METHODOLOGY AND MODELING OF A TIME SERIES 

 

3.1. Box & Jenkins Model (1976)     

  

The Box & Jenkins (1976) model is used to determine an adequate methodology for showing a 

chronicle for the purpose of predicting nearby eventual values. Indeed, the objective of this 

methodology is the modeling of a time series according to its past and present values in order to 

determine the appropriate ARIMA process by principle of parsimony. This methodology suggests model 

identification with a three-step procedure including model estimation and model validation. Then, 

the three steps are identified as the sequences: 

 

3.2. Data 

 

The data used are the daily closing prices of bitcoin from 1-hour intervals from 01/01/2018 00:00 to 

04/03/2021 08:30:00, corresponding to a total of 27801 observations. released in US dollars. We 

calculate the returns by taking the natural logarithm of the ratio of two consecutive prices, as a good 

approximation of the daily percentage price changes. 

The data is titled: Starter Bitcoin Intraday OHLCV Data 266aba01-6, is an open-high-low-close chart 

(also OHLC) a type of chart typically used to illustrate movements in the price of a financial 

instrument over time.  

Source: https://www.kaggle.com/kerneler/starter-bitcoin-intraday-ohlcv-data-266aba01-6/data 
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Figure 2:  Bitcoin prices 
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Figure 2 shows the dynamic behavior of Bitcoin exchange rate. The observation data are selected 

from January 2018 until march 2021. The total number of observations is 27801. . 

 

 3.3. Model identification 

 The first state is to determine the number of differences needed to render the time series over a 

long period. To do this, we will test the stationarity of the series by a simple or augmented unit root 

test (ADF) to determine the type of stationarity process, namely DS or TS.  

Then, if the data is stationary, then we determine the order of the autoregressive process AR (p) and 

the moving average MA (q) by creating the graph of the partial correlation function (PACF) and the 

autocorrelation function (ACF) So that we can get the ARIMA model. 

3.4. Unit root test 

Whether the time series is stationary or not is a very important concept before drawing conclusions 

in time series analyses. Therefore, Augmented Dickey Fuller (ADF), Phillips Perron (PP), and 

Kwiathowsky-Phillips-Schmidt-Shin (KPSS) tests were used to verify the stationery of the series. The 

test is based on the assumption that a series of time data 𝑌𝑡 follows a random movement:              𝑌𝑡 = 

𝜌 𝑌𝑡−1 + 𝑒𝑡 

Where ρ is the characteristic root of an AR polynomial and 𝑒𝑡 is a purely random process with mean 

zero and variance Var (𝑒𝑡) equal to zero.. 

 

3.4.1 Augmented Dickey Fuller Test (ADF) 

 

The Augmented Dickey Fuller test (1979) is a root test of the ADF unit, which therefore tests the 

acceptance, or rejection of one of the following two hypotheses: 

 H0: ρ = 1 non stationary or else H1: ρ ≠ 1 stationary.  

The ARIMA model is the course of the Box and Jenkins method which makes it possible to determine 

a time series according to its characteristics. It consists of several steps: 

 

Figure 3: The process of creating a dynamic forecast from ARIMA2 

 
In order to derive a reliable calculated value β, it is necessary to observe some basic conditions: 

- The presence of a linear relationship between the dependent and independent variables 

- Homoscedasticity (i.e. constant dispersion) of errors 

- The mean value of the error distribution is usually zero 

 
2 https://newdaycrypto.com/fr/supply-and-demand-model-for-bitcoin-price 



RUSSIAN LAW JOURNAL        Volume -XII (2024) Issue 2    

 

1941 

- Absence of autocorrelation of errors (i.e. they are not correlated with the sequence of errors taken 

with a time shift) 

In total, we can calculate demand using the model MCO;  F(t)= β t                                                                                  

Figure 3: Box and Jenkins method 3 

 

 

 

  

 

 

 

 

 

 

 

                                                  

          

If the residue is not white noise 

 

 

 

 

 

 

 

 

 

3.4.2. Other stationarity tests 

 

• Phillips Perron Test 

 

     Phillips and Perron (1988) is perhaps the most frequently used alternative to the Augmented 

Dickey Fuller (ADF) test. 

They modify the statistical test so that no additional delay of the dependent variable is needed in 

the presence of serial errors. The advantage of this test is that it does not assume any functional 

form during the first process of the variable which is applicable to a very large number of problems. 

     Test de Kwiathowsky-Phillips-Schmidt-Shin  

 

Kwiathowsky-Phillips-Schmidt-Shin (KPSS) (1992) is a test where the null hypothesis is the reverse. 

These are tests to see if the test can reject stationary. This is the PP and ADF test reserve. 

 

• Identification  

 A series that exhibits an AR (p) process whose ACF bounds exponentially and whose PACF 

increases in one or more cases. 

➢ The number of spikes only the command p. 

Series that exhibit an MA(q) process whose PACP declines exponentially and ACFs have peaks in the 

former are more lodges. 

➢ The number of spikes only the command q. 

 
3 Hélène Hamisultane (2002). ‘Time series econometrics’. Licence. Frensh. 2002. ffcel01261174f 

Determining and removing 
seasonality from the time 
series 

Determining and removing the 
trend from the seasonally 
adjusted time series 
Determination of the orders p 
and q of the ARMA model: 
Analysis of simple and partial 
correlograms 

Simple and partial 
correlogram analysis 

Maximum likelihood 
method 

Estimation of model 
coefficients 

Analysis of coefficients and 
residuals 

Stationarity tests: 

• Dickey-Fuller test 

• Phillips-Perron test 

• KPSS testing 

(Kwiatkowski, Phillips, 

Schmidt and Shin) 

Forecast 
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The series exhibits an ARMA (p,q) process if the PCA and PACF bound exponentially. The number of 

spikes includes only p and q orders. 

• Estimation  

      This involves estimating the parameters of the appropriate ARIMA model identified in the previous 

step by the conditional least squares method. 

 

➢ Diagnostic test 

In this step, it is necessary to validate the adequate model which minimizes the information criteria: 

Akaike Information Criterion (AIC), Modified Akaike Information Criterion (AICC), Boyesion 

Information Criterion (BIC), then verification of the model by analyzing the residual must be white 

noise. 

➢ Akaike Information Criterion (AIC) 

The AIC says to select the ARIMA (p, d, q) model  that maximizes 

 AIC = -2Ln L + 2k 

➢ Modified Akaike Information Criterion (AICC) 

The problem arises in the sense that the AIC whose statistical alternative corrected for this bias 

becomes: 

                AICC=AIC +
2 (𝐾+1)+(𝐾+2)

𝑛−𝑘−2
 

 

➢ Boyesion Information Criterion (BIC) 

The BIC says to select the ARIMA(p,d,q) model that maximizes. 

BIC = -2Ln L + 2k Ln (n); 

Where Ln L is the natural logarithm of the estimated likelihood function and k = p + q is the number 

of parameters in the model and n observations. 

Both AIC and BIC require the maximization of the log likelihood function when we compared AICC to 

BIC, resulting in a more severe penalty for parameterized models. 

Results and discussion  

4. RESULTS 

 

This section describes the result for autoregressive integrated moving average (ARIMA) model for 

forecasting the Bitcoin prices. 

 

4.1. Descriptive statistics: 

Figure 4: Descriptive statistics  
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                Source : Made by the authors 

            Figure 5 : QQ-plot 
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➢ We reject the null hypothesis of the Jarque bera test, our series does not follow a normal 

law, 

➢ the QQplot graph clearly confirms the non-normality of our series 

 

 

Table 1: Empirical distribution Test 

Empirical Distribution Test for PT  

Hypothesis: Normal   

Date: 09/23/22   Time: 15:59   

Sample: 1/01/2018 00:00 3/04/2021 08:00  

Included observations: 27778   

     
     Method Value   Adj. Value Probability  

     
     Lilliefors (D) 0.287544 NA 0.0000  

Cramer-von Mises (W2) 644.6179 644.6295 0.0000  

Watson (U2) 571.2420 571.2522 0.0000  

Anderson-Darling (A2) 3453.828 3453.922 0.0000  

     
          

Method: Maximum Likelihood - d.f. corrected (Exact Solution) 

     
     Parameter Value    Std. Error z-Statistic Prob.  

     
     MU 10371.57 49.24800 210.5989 0.0000 

SIGMA 8208.034 34.82422 235.6990 0.0000 

     
     Log likelihood -289774.2       Mean dependent var. 10371.57 

No. of Coefficients 2       S.D. dependent var. 8208.034 
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4.2. Unit root test 

 

➢ Augmented DICKEY-FULLER    

 

➢ Table 2 : ADF for PT 

Null Hypothesis: PT has a unit root  

Exogenous: Constant   

Lag Length: 17 (Automatic - based on SIC, maxlag=20) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic  2.533249  1.0000 

Test critical values: 1% level  -3.430416  

 5% level  -2.861453  

 10% level  -2.566764  

     
          
     
 

❖ the ADF's null hypothesis that a unit root is present in our time series is accepted. there is a 

unit root, 

❖ so we proceed to the differentiation of our series. 

 

Table 3 : ADF for D(PT) 

 

Null Hypothesis: D(PT) has a unit root  

Exogenous: Constant   

Lag Length: 16 (Automatic - based on SIC, maxlag=20) 

     
        t-Statistic   Prob.* 

     
     Augmented Dickey-Fuller test statistic -37.79887  0.0000 

Test critical values: 1% level  -3.430416  

 5% level  -2.861453  

 10% level  -2.566764  

     
          
 

 

❖ the ADF's null hypothesis that a unit root is present in our time series is rejected. there is no 

unit root. 

 

➢ PHILIP PERRON :  

 

Table 4 : PHILIP PERRON  for PT 

Null Hypothesis: PT has a unit root  

Exogenous: Constant   

Bandwidth: 58 (Newey-West automatic) using Bartlett kernel 

     
        Adj. t-Stat   Prob.* 

     
     Phillips-Perron test statistic  3.132504  1.0000 

Test critical values: 1% level  -3.430415  

 5% level  -2.861453  
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 10% level  -2.566764  

     
          
     
 

- the ADF's null hypothesis that a unit root is present in our time series is accepted. there is a 

unit root, 

 

- so we proceed to the differentiation of our series. 

 

Table 5 : PHILIP PERRON  for D(PT) 

 

Null Hypothesis: D(PT) has a unit root  

Exogenous: Constant   

Bandwidth: 59 (Newey-West automatic) using Bartlett kernel 

     
        Adj. t-Stat   Prob.* 

     
     Phillips-Perron test statistic -175.2545  0.0001 

Test critical values: 1% level  -3.430415  

 5% level  -2.861453  

 10% level  -2.566764  

     
  Source : 

Made by the 

authors 

 Source : 

Made by 

the 

authors 

 

                                       
❖ the ADF's null hypothesis that a unit root is present in our time series is rejected. there is no 

unit root. 

 

4.3. Autocorrelation function (ACF) and partial autocorrelation function (PACF) analysis: 

 

Table 4: Correlogram for Bitcoin Prices

 

Date: 09/23/22   Time: 15:40

Sample: 1/01/2018 00:00 3/04/2021 08:00

Included observations: 27778

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.999 0.999 27747. 0.000

2 0.999 0.026 55462. 0.000

3 0.998 0.011 83146. 0.000

4 0.998 -0.002 110799 0.000

5 0.997 0.017 138423 0.000

6 0.997 -0.006 166017 0.000

7 0.996 -0.025 193578 0.000

8 0.995 -0.007 221108 0.000

9 0.995 0.002 248606 0.000

10 0.994 0.010 276073 0.000

11 0.994 -0.008 303507 0.000

12 0.993 -0.007 330910 0.000

13 0.992 -0.000 358281 0.000

14 0.992 -0.018 385618 0.000

15 0.991 -0.004 412922 0.000

16 0.991 0.014 440193 0.000

17 0.990 -0.000 467432 0.000

18 0.989 0.016 494640 0.000

19 0.989 0.002 521816 0.000

20 0.988 -0.012 548960 0.000

21 0.988 -0.017 576071 0.000

22 0.987 0.011 603149 0.000

23 0.986 0.006 630196 0.000

24 0.986 -0.000 657211 0.000
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This study performed the autocorrelation function (ACF) and partial autocorrelation function (PACF) 

analysis. There is slow decay in autocorrelation analysis. Therefore, exchange rate data is a non-

stationary data. 

Then, this study evaluated the stationarity characteristics or the first bitcoin exchange rate 

difference. Table 4 shows autocorrelation function (ACF) and partial autocorrelation function (PACF) 

analysis for the first bitcoin exchange rate difference. 

Autocorrelation function (ACF) shows strong autocorrelation in a way that does not let us conclude 

from its order. At the same time, partial autocorrelation function (PACF) shows a significant peak at 

second order. This indicates the the autoregressive part can be represented by order two. 

Consequently, we cannot conclude for our ARIMA model and we move on to differentiation. 

 

Table 5 :  Correlogram for first difference of Bitcoin exchange rate 

 

 
The Table 5 shows the first bitcoin price difference lack. this allow us to conclude that our series is 

stationary in first difference. 

➢ ARIMA 

 

So to conclude for our ARIMA model, the best way is to use an adequate selection criterion based on 

iterations, the ARIMA model selection table according to the Akaike Information Criterion (AIC) 

 

Table No. 5   ARIMA model selection table according to the Akaike Information Criterion (AIC) 

Date: 09/23/22   Time: 15:47

Sample: 1/01/2018 00:00 3/04/2021 08:00

Included observations: 27772

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.049 -0.049 66.357 0.000

2 -0.023 -0.026 81.465 0.000

3 0.021 0.019 93.751 0.000

4 -0.030 -0.028 117.94 0.000

5 -0.013 -0.015 122.41 0.000

6 0.008 0.005 124.18 0.000

7 -0.025 -0.024 141.45 0.000

8 0.034 0.032 173.43 0.000

9 -0.007 -0.006 174.83 0.000

10 0.018 0.020 183.35 0.000

11 0.007 0.006 184.52 0.000

12 0.030 0.033 209.77 0.000

13 0.054 0.058 291.24 0.000

14 -0.020 -0.013 302.17 0.000

15 0.014 0.016 307.33 0.000

16 0.019 0.018 316.87 0.000

17 -0.040 -0.032 360.50 0.000

18 -0.004 -0.008 361.04 0.000

19 -0.002 -0.004 361.17 0.000

20 -0.005 -0.003 361.90 0.000

21 0.012 0.006 366.20 0.000

22 -0.018 -0.018 374.97 0.000

23 -0.001 -0.005 374.99 0.000

24 -0.043 -0.050 427.16 0.000
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after iterations, by the powerful calculation tool, the ARIMA model selection table according to the 

Akaike Information Criterion (AIC), our model turns out to be an ARIMA(9,1,9). 

 

➢ Forecating of price bitcoin ARIMA model 

 

Dependent variable:   PT   

Method: ARMA Maximum Likelihood (BFGS)  

Date: 09/23/22   Time: 21:31   

Sample: 1/01/2018 10:00 3/04/2021 08:00  

Included observations: 27763   

Convergence achieved after 267 iterations  

Coefficient covariance computed using outer product of gradients 

     
     Variable Coefficient Std. Error t-Statistic Prob.   

     
     PT 0.000298 2.52E-05 11.85158 0.0000 

AR(1) -0.115929 0.020501 -5.654911 0.0000 

AR(2) 0.235511 0.012078 19.49970 0.0000 

AR(3) 0.517362 0.007232 71.53956 0.0000 

AR(4) -0.368164 0.014635 -25.15708 0.0000 

AR(5) -0.059557 0.018867 -3.156611 0.0016 

AR(6) 0.484219 0.014050 34.46321 0.0000 

AR(7) 0.408901 0.006376 64.12685 0.0000 

AR(8) -0.456808 0.012427 -36.75858 0.0000 

AR(9) -0.622783 0.017782 -35.02403 0.0000 

MA(1) 0.062045 0.021099 2.940647 0.0033 

MA(2) -0.268745 0.013064 -20.57168 0.0000 

MA(3) -0.496816 0.007330 -67.77743 0.0000 

MA(4) 0.370494 0.014786 25.05668 0.0000 

MA(5) 0.037241 0.019158 1.943891 0.0519 

MA(6) -0.478208 0.014420 -33.16256 0.0000 

MA(7) -0.371487 0.006621 -56.10958 0.0000 

MA(8) 0.523433 0.012054 43.42247 0.0000 

MA(9) 0.598033 0.018888 31.66240 0.0000 

SIGMASQ 19818.53 28.94291 684.7454 0.0000 

     
     R-squared 0.020085     Mean dependent var 1.325927 

Adjusted R-squared 0.019413     S.D. dependent var 142.2162 

AR /  MA  0.000000  1.000000  2.000000  3.000000  4.000000  5.000000  6.000000  7.000000  8.000000  9.000000  10.00000

 0.000000  12.75193  12.74954  12.74909  12.74888  12.74808  12.74795  12.74795  12.74752  12.74619  12.74626  12.74607

 1.000000  12.74966  12.74923  12.74874  12.74870  12.74802  12.74709  12.74705  12.74665  12.74626  12.74633  12.74461

 2.000000  12.74904  12.74865  12.74817  12.74536  12.74805  12.74537  12.74678  12.74499  12.74513  12.74517  12.74021

 3.000000  12.74878  12.74860  12.74879  12.74579  12.74548  12.74523  12.74550  12.74500  12.74083  12.73996  12.74283

 4.000000  12.74802  12.74791  12.74797  12.74539  12.74069  12.73921  12.73883  12.73886  12.73941  12.73883  12.73866

 5.000000  12.74788  12.74712  12.74541  12.74525  12.73914  12.73892  12.73899  12.73886  12.73890  12.73929  12.73857

 6.000000  12.74793  12.74713  12.74701  12.74553  12.73885  12.73899  12.73887  12.74156  12.73729  12.73733  12.73837

 7.000000  12.74741  12.74657  12.74708  12.74421  12.74323  12.74415  12.74161  12.73793  12.73798  12.73776  12.73634

 8.000000  12.74651  12.74642  12.74646  12.74453  12.73938  12.73891  12.73616  12.73622  12.73686  12.73628  12.73616

 9.000000  12.74654  12.74662  12.74565  12.74002  12.73930  12.73852  12.73832  12.73670  12.73518  12.73375  12.73382

 10.00000  12.74624  12.74624  12.74041  12.74321  12.73937  12.74604  12.73744  12.73782  12.73396  12.73494  12.73521
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S.E. of regression 140.8290     Akaike info criterion 12.73375 

Sum squared resid 5.50E+08     Schwarz criterion 12.73968 

Log likelihood -176743.6     Hannan-Quinn criter. 12.73566 

Durbin-Watson stat 1.999190    

     
     Inverted AR Roots  .94-.24i      .94+.24i    .53+.84i  .53-.84i 

 -.41-.91i     -.41+.91i   -.73-.58i -.73+.58i 

      -.78   

Inverted MA Roots  .95-.25i      .95+.25i    .53+.84i  .53-.84i 

 -.41+.90i     -.41-.90i   -.73+.56i -.73-.56i 

      -.75   

     
                       Source : Made by the authors  
 

5. INTERPRETATIONS AND DISCUSSIONS 

 

     The Augmented Dickey-Fuller (ADF) test is applied to the Bitcoin daily closing price time series 

and it can be observed that the ADF did not reject the null hypothesis and has a p-value greater than 

the significance level value of 0.05; thus indicating non-stationarity. Therefore, it is necessary to 

difference the series to obtain stationarity (Brockwell and Davis, 2012).  

       Therefore, series became stationary with first difference. (Table 5): Differenced Time Series for 

Bitcoin Daily Closing Price With stationarity confirmed, the process for ARIMA modelling of the Bitcoin 

daily closing price time series was carried out. 

    As a starting point, ARIMA(1,1,0) (Table 3) was conditionally selected based on highest number of 

significant coefficients and lowest values of volatility and AIC; but must be confirmed by running 

residual diagnostics to ensure that all its coefficients are within the significance interval.  

 

    Running Residual ACF (Table 4: Correlogram for Bitcoin Prices) on ARIMA(1,1,0) showed that there 

were outliers at lags 1 to 24 which indicates that not all information of the time series has been 

captured in the model and there was therefore a need for model re-estimation.  

   Re-estimation involved taking the outliers mentioned above into consideration and re-running 

residual diagnostics. ARIMA (9,1,9) model was found to present a better performance and its residual 

diagnostics showed that it has all coefficients located within the confidence interval, this calculation 

was on (Table 5), with the tool ARIMA model selection table according to the Akaike Information 

Criterion (AIC). 

 

6. CONCLUSION 

    In this paper, we have conducted the forecast of  Bitcoin daily closing price using the ARIMA model 

in order to assist investors in their investment decisions. This is because price forecast of Bitcoin 

constantly attracts attention due to its direct monetary advantage.  

 Eviews was used for model identification, parameter estimation, diagnostics and forecasting and 

ARIMA (9,1,9) model was selected as the most suitable based on number of significant coefficients, 

values of volatility, AIC and BIC, and having all coefficients within the significance interval for 

residual diagnostics. ARIMA (9,1,9) model gave very close forecast values for the first seven days of 

forecast with a prediction accuracy of 99 %. Thus, this reinforces the ease of application and 

suitability of ARIMA models for short - term forecast only; as against more complex models such as 

artificial neural network models. 

   From the perspective of  BTC investors or users, these results can be useful in understanding BTC 

price movements and could help in understanding the influence of historical data on BTC price. This 

elaborate model will precisely help investors in this market to make a decision according to the 

forecasts obtained. 
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