
RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

253

USING PYTHON FOR TEACHING CLASSIC MECHANICS IN

UNIVERSITY STUDENTS

1MARIA FERNANDA HEREDIA MOYANO, 2NATALY BONILLA GARCÍA, 3MYRIAN CECILIA BORJA
SAAVEDRA, 4MIGUEL ÁNGEL SÁEZ PAGUAY, 5ALEX FERNANDA ERAZO LUZURIAGA, 6JHONNY

MARLON BORJA BORJA, 7SANDRA FABIOLA HEREDIA MOYANO,
1mariaf.heredia@espoch.edu.ec, fernandah63@hotmail.com, https://orcid.org/0000-0002-

0145-2098, Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH matriz
2nbonilla@espoch.edu.ec, naty_bg21@hotmail.com, https://orcid.org/0000-0001-6089-4876,

Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH matriz
3mc_borja@espoch.edu.ec, mc_borja@yahoo.es, https://orcid.org/0000-0002-8230-2891,

Facultad de Ciencias, Escuela Superior Politécnica de Chimborazo ESPOCH matriz
4miguel.saez@espoch.edu.ec, https://orcid.org/0000-0003-3192-5084, Facultad de Recursos

Naturales, Escuela Superior Politécnica de Chimborazo (ESPOCH), Orellana.
5alexerazo1407@hotmail.com, https://orcid.org/0000-0002-1089-383X, Ingeniero en Sistemas

investigador independiente.
6johnborjab@hotmail.com,https://orcid.org/0000-0002-3708-0126, Máster en Ingeniería

Química – investigador independiente.
7herediafhm@gmail.com, https://orcid.org/0000-0003-3668-1269, Máster en Química –

estudiante PhD en la Universidad de Pardubice

ABSTRACT
This article contains codes in Python programming language as a tool to support the teaching
of classical physics, presents a menu of options for calculating magnitudes within uniformly
varied rectilinear motion, parabolic motion, free fall, and uniform circular motion. The
written codes can be verified using Python online, and there is also a code that does require
the installation of Python and additional libraries to be able to see the graph of position-time,
speed-time and acceleration-time. It was verified that each code works in two different
online Python links and for a better understanding of the user the calculation menu is
explained in parts.

Keywords: Classic physics, Python, Teaching physics

INTRODUCTION
This research is based on the use of the Python programming language for teaching classical
physics exercises in university students.
In higher education we have been faced with the challenge of using several digital tools, in
this way in recent years several free services have been put online to support teaching and
thus be a didactic way for learning. For this reason, it has been considered important to
include learning tools through Python programming to classical physics topics.
Classical physics is considered a very important basic subject for most careers at a higher
level, much more in students of the Physics career who require adequate understanding of
the first topics of classical physics to continue advancing and delving into the other topics of
study, then it is a priority to look for other educational means to reach the easy
understanding of physics topics towards students. By including a new study methodology, it
turns out to be of greater interest to the student who is in the learning stage, and thus seeks
to venture into the Python programming language to solve exercises.
It is considered to address the topics of varied uniform rectilinear motion, parabolic motion,
free fall and uniform circular motion which are the initial topics with which students could

begin to solve exercises through an algorithm designed in Python programming language.
Python is an easy-to-understand programming language, easy to use for anyone who has basic
programming knowledge and is also freely accessible, open source, this makes you find a lot
of information on how to write the algorithms, how to download libraries and applications to
work in a multidisciplinary way. In case the user has questions or doubts about the
programming language in Python, there are many support forums that are useful and quick to
dispel inconveniences.
It is intended that students to venture into two topics such as programming and solving
classical physics exercises are enthusiastic, interested and concentrated at the time of

mailto:mariaf.heredia@espoch.edu.ec
mailto:fernandah63@hotmail.com
https://orcid.org/0000-0002-0145-2098
https://orcid.org/0000-0002-0145-2098
mailto:nbonilla@espoch.edu.ec
mailto:naty_bg21@hotmail.com
mailto:mc_borja@yahoo.es
https://orcid.org/0000-0002-8230-2891
mailto:miguel.saez@espoch.edu.ec
https://orcid.org/0000-0003-3192-5084
mailto:alexerazo1407@hotmail.com
https://orcid.org/0000-0002-1089-383X
https://orcid.org/0000-0002-3708-0126
https://orcid.org/0000-0003-3668-1269

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

254

studying and solving the exercises, in this way two lines of study are consolidated, on the one
hand programming and on the other hand classical physics, We believe that there are new
methods and methodologies to teach and learn the basic sciences in order to attract the
attention and interest of the student.

METHODOLOGY
In the first stage of this teaching is to understand the formulas that will be used in Python to
solve the exercises, then the formulas that will be programmed to solve the exercises are
explained.

Varied uniform rectilinear motion
This movement considers that a single system moves in a straight line that is to say in one
dimension and that the velocity changes in the passage of time, so that it has an acceleration
different from zero, the following formulas are considered:

- 𝑑 = 𝑉𝑜𝑡 +
1

2
𝑎𝑡2Distance

- Final speed 𝑉𝑓 = 𝑉𝑜 + 𝑎𝑡,

- Acceleration 𝑎 =
 𝑉𝑓−𝑉𝑜

𝑡
,

- Time t=
 𝑉𝑓−𝑉𝑜

𝑎
.

Where: Vo is initial velocity, a is acceleration, t is travel time.

Parabolic motion
This is a two-dimensional motion in which the acceleration remains constant and is equal to
the value of the acceleration of gravity 9.8 𝑚/𝑠2 , in this motion we can calculate the

following quantities:

- Maximum distance,𝑅 =
𝑣0

2𝑠𝑒𝑛 2∝0

𝑔

- Maximum height, =
𝑣0

2𝑠𝑒𝑛 2∝0

2𝑔

- Flight time,𝑡𝑣 = 2
𝑣𝑜𝑠𝑒𝑛∝0

𝑔

- Upload time, 𝑡𝑠 =
𝑣𝑜𝑠𝑒𝑛∝0

𝑔

- Initial speed, , 𝑣𝑜𝑥 = 𝑣𝑜𝑐𝑜𝑠 ∝0, 𝑣𝑜𝑦 = 𝑣𝑜𝑠𝑒𝑛 ∝0 𝑣𝑜 = 𝑣𝑜𝑥
2 + 𝑣𝑜𝑦

2

Where, vo is the initial speed of the movement, is the angle ∝0 with respect to the
horizontal from where the trajectory of the movement starts, sometimes this angle is 0, g is
the value of the acceleration of gravity.

Free Fall
This movement occurs when a single system is dropped from a certain height and through the
action of the acceleration of gravity will touch the ground, for these calculations we will
consider that if the movement is in favor of gravity then g is positive, with this, you can find

exercises that ask to calculate the following unknowns:

- Height from which he was thrown, 𝑦 =
1

2
𝑔𝑡2

- Final speed,𝑣𝑦 = 𝑔𝑡

Where, initial velocity in this movement we consider zero, g is the value of the acceleration
of gravity 9.8 m / s2 and t is the time in which the movement elapses.

Uniform circular motion
The uniform circular movement allows us to know when a single system has a movement no
longer rectilinear but circular, in this case we can know the following magnitudes:

- Angle of the circular path, 𝜃 = 𝜔. 𝑡
- Time 𝑡 = 𝜃/𝜔

- Centripetal acceleration, 𝑎𝑐 = 𝑣2/𝑟

Where, is the angular velocity, t is the time, is the 𝜔 linear velocity, 𝑣 is the radius of the
circular path where the motion occurs. 𝑟

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

255

Python programming code
To begin with, a menu of options was created so that the user can choose which movement
he wants to use, and we used the import math library.
5 options are created to choose from in the main menu

import math
Options = ["A", "B", "C", "D", "E"]
while True:
 print('''
 Select the topic you want to work on:
to. Varied uniform rectilinear motion
b. Parabolic Movement
c. Free Fall
 d. Uniform circular motion

 and. Get out
 ''')
 option = input("Enter the topic you want to solve:")
 if not (opcion in opciones):
print("I do not select a valid option")
 input("Press enter to continue")
 continue

Python programming code for Rectilinear orNiform Movement variado

For this move the following options have been placed in Python:

if option == "a":
 try:
 option = ["1", "2", "3", "4", "5"]
 while True:

 print("""

 * UNIFORMLY VARIED RECTILINEAR MOTION *
 * *

 """)
 print('''
 Select the formula you want to solve:

 1. Tiempo -----> t=(Vf+Vo)/a
 2. Velocidad Final ---> Vf=Vo+a*t
3. Distancia ----> d=((Vo*t)+(0.5*a*t**2))
4. Aceleracion ----> a=(Vf-Vi)/t
 5. Sign Out

 ''')

 opcb = input("Enter the option you want")
 if not (opcb in opci):

print("I do not select a valid option")
 input("Press enter to continue")
 continue
 if opcb == "1":
 try:
a = float(input("Enter the acceleration in (m/s^2) : "))
 print()
 vo = float(input("Enter the initial velocity in (m/s) : "))
 print()
 vf = float(
 input("Enter the final velocity in (m/s) : "))

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

256

 t = (vf+vo)/a
 print("THE TIME IS: t = ", round(t, 3), " s ")
 except ValueError:
 print("Incorrect Quantity")
 continue
 if opcb == "2":
 try:
 vo = float(input("Enter the initial velocity in (m/s) : "))
 print()
a = float(input("Enter the acceleration in (m/s^2) : "))
 print()
t = float(input("Enter time in (s) : "))
 vf = vo+(a*t)
 print("THE FINAL SPEED IS : vf = ",

 round(vf, 3), " m/s ")
 except ValueError:
 print("Incorrect Quantity")
 continue
 if opcb == "3":
 try:
 vo = float(
 input("Enter the initial speed in (m/s) : "))
 a = float(
 input("Enter acceleration in (m/s^2) : "))
t = float(input("Enter time in (s) : "))
 d = ((vo*t)+(0.5*a*(t**2)))
 print("THE DISTANCE IS : d = ", round(d, 3), " m ")
 except ValueError:
 print("Incorrect Quantity")
 continue
 if opcb == "4":

 try:
 vo = float(
 input("Enter the initial speed in (m/s) : "))
 print()
 vf = float(
 input("Enter the final velocity in (m/s) : "))
 print()
t = float(input("Enter time in (s) : "))
 print()
 a = (vf-vo)/t
 print("THE ACCELERATION IS : a = ",
 round(a, 3), " m/s^2 ")
 except ValueError:
 print("Incorrect Quantity")
 continue
 if opcb == "5":
 print("End of program")
 break

 except:
 print("Incorrect quantity")
 continue

Python programming code for Parabolic Motion
For this movement was programmed to calculate 5 magnitudes that are as follows:

if opcion == "b":
 try:
 opcio = ("1", "2", "3", "4", "5", "6")

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

257

 while True:

 print("""

 * PARABOLIC MOVEMENT *
 * *

 """)
 print('''
 Select the formula you want to solve:
1. Calculate the maximum distance.
2. Calculate the maximum height.
 3. Calculate the flight time.
 4. Calculate the upload time.

 5. Calculate the velocity and its components in x-y in a time t.
 6. Sign Out
 ''')
 opcc = input("Enter the case you want to solve: ")
 if not (opcc in opcio):
print("I do not select a valid option")
 input("Press enter to continue")
 continue
 if opcc == "1":
 try:
 Vo = float(input("Initial velocity (m/s):"))
 B = float(input("Tilt angle (degrees):"))
 g = float(input("Gravedad (m/s^2):"))
 O = (B*(math.pi))/180
 Dmax = ((Vo**2)*(math.sin(2*O)))/g
print("The maximum distance is: ", round(Dmax, 2), "m")
 input("click to continue")

 except:
 print("Incorrect Quantity")
 continue
 if opcc == "2":
 try:
 Vo = float(input("Initial velocity (m/s):"))
 B = float(input("Tilt angle (degrees):"))
 g = float(input("Gravedad (m/s^2):"))
 O = (B*(math.pi))/180
 I go = Vo*(math.sin(O))
 Hmax = float((Voy**2)/(2*g))
print("The maximum height is: ", round(Hmax, 2), "m")
 input("click to continue")
 except:
 print("Incorrect Quantity")
 continue
 if opcc == "3":
 try:

 Vo = float(input("Initial velocity (m/s):"))
 B = float(input("Tilt angle (degrees):"))
 g = float(input("Gravedad (m/s^2):"))
 O = (B*(math.pi))/180
 I go = Vo*(math.sin(O))
 tv = (2*I go)/g
 print("Flight time is: ", round(tv, 2), "s")
 input("click to continue")
 except:
 print("Incorrect Quantity")
 continue

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

258

 if opcc == "4":
 try:
 Vo = float(input("Initial velocity (m/s):"))
 B = float(input("Tilt angle (degrees):"))
 g = float(input("Gravedad (m/s^2):"))
 O = (B*(math.pi))/180
 I go = Vo*(math.sin(O))
 ts = (I go)/g
 print("Upload time is: ", round(ts, 2), "s")
 input("click to continue")
 except:
 print("Incorrect Quantity")
 continue
 if opcc == "5":

 try:
 Vo = float(input("Initial velocity (m/s):"))
 B = float(input("Tilt angle (degrees):"))
 g = float(input("Gravedad (m/s^2):"))
 O = (B*(math.pi))/180
 I go = Vo*(math.sin(O))
 Vox = Vo*(math.cos(O))
 tv = (2*I go)/g
 while True:
 t = float(
 input("Time at which you want to calculate the speed(s):"))
 if t >= tv:
 print(
 "The time must be less than the flight time of", round(tv, 2), "s")
 continue
 if t < tv:
 Vy = Voy-(g)*t

 Vx = Vox
 a = (math.pow(Vy, 2))
 b = (math.pow(Vx, 2))
 c = a+b
 V = (math.pow(c, 1/2))
 break
 print("Velocidad en ", t, "s =", round(V, 2), "m/s")
 print("Vx en ", t, "s =", round(Vx, 2), "m/s")
 print("Vy en ", t, "s =", round(Vy, 2), "m/s")
 input("click to continue")
 except:
 print("Incorrect Quantity")
 continue
 if opcc == "6":
 print("End of program")
 break
 except:
 print("Incorrect Quantity")

 continue

Python Programming Code for Free Fall
 In this movement you can enter the value of time and will result in the height of which the
object was thrown and the final velocity.

if option == "c":
 print("""

 FREE FALL
 * *

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

259

 """)
 try:
 g = float(9.8)
 print("Let's consider an object that is thrown at a vo=0")
 t = float(input("Enter the time s-> "))
 cl = float(0.5*g*(t**2))
 vf = float(g*t)
 print("The height the object was thrown:", round(cl, 3), " m")
 print("")
 print("The final velocity of the object:", round(vf, 3), " m/s")
 print("")
 except:
 print("Incorrect Quantity")

 continue

Python programming code for Uniform Circular Motion
For the circular movement we can calculate 3 magnitudes

if opcion == "d":
 try:
 opc = ["1", "2", "3", "4"]
 while True:
 print("""

 * UNIFORM CIRCULAR MOTION *
 * *

 """)
 print('''
 Select the formula you want to solve:

 1. Angulo: An=w*t
 2. Tiempo: t=An/w
 3. Acceleration centripeda Ac=v^2/r
 4. Exit
 ''')
 opca = input("Enter what you want to find: ")
 if not (opca in opc):
print("I do not select a valid option")
 input("Press enter to continue")
 continue
 if opca == "1":
 try:
value = float(input("Angular velocity (rad/s)-> "))
 valorb = float(input("Tiempo (s)-> "))
 valorc = value*valorb
print("The angle of rotation is: ",
 round(valorc, 2), "degrees")
 input("Click to continue")

 except:
 print("Incorrect quantity")
 continue
 if opca == "2":
 try:
 valora = float(input("Angulo (rad)-> "))
 valorb = float(input("Velocidad angular (rad/s)-> "))
 valorc = value/valorb
 print("The time it takes is: ",
 round(valorc, 2), "rad/s")
 except:

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

260

 print("Incorrect quantity")
 continue
 if opca == "3":
 try:
 values = float(input("Tangential speed (m/s)-> "))
 valorb = float(input("Radio (m)-> "))
 valorc = value**2/valorb
print("The centripoded acceleration is: ",
 round(valorc, 2), "m/s^2")
 except:
 print("Incorrect quantity")
 continue
 if opca == "4":
 print("End of program")

 break
 else:
 print("End of program :)")
 except:
 print("Incorrect quantity")
 continue

All the boxes with the codes are placed in a single Python file and run the program with all
the options.

In addition, a code was written to show the graph of the behavior of:

 Position – time

 Speed – time

 Acceleration – time

To do this you need to use the Python program on the desktop and install the libraries of
"from matplotlib import pyplot" and "import matplotlib.pyplot as plt", the code is shown as
follows:

from matplotlib import pyplot
import matplotlib.pyplot as plt

vo=float(input("Enter initial speed ==> "))
xo=float(input("Enter the starting position ==> "))
a=float(input("Enter acceleration ==> "))

def f1(t):
 return xo+vo*t+(1/2)*a*(t**2)
def f2(t):
 return vo+a*(t)
def f3(t):
 return a
t = range(0, 8)

plt.grid(True)
plt.title('''
 MRU-MRUV Charts

 Position-Time
 Speed-Time
 Acceleration-Time
 ''')

Graph
pyplot.plot(t, [f1(i) for i in t])
pyplot.plot(t, [f2(i) for i in t])
pyplot.plot(t, [f3(i) for i in t])

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

261

Set the color of the axes.
pyplot.axhline(0, color="black")
pyplot.axvline(0, color="black")

Limit axis values.
pyplot.xlim(0, 7)
pyplot.ylim(0, 10)

Save graphic as PNG image .
pyplot.savefig("output.png")
Show it.
pyplot.show()

With these codes it is very useful for students to corroborate their handmade answers and
even see the graphs for rectilinear movement.

RESULTS
We use the online Python link to be able to obtain the results so that users in this case
students do not need to install the Python program on their computers on a mandatory basis.
Link to use Python online:
Online Python Compiler (Interpreter) (programiz.com)
https ://replit.com/languages/python3

This is how the initial program message is displayed

Fig 1. Initial message of the program to solve classical physics exercises

If we choose each of the options it will be displayed as shown in Fig. 2.

Fig. 2: Output of options a, b, c, d, e, from the main menu of the program.

https://www.programiz.com/python-programming/online-compiler/
https://replit.com/languages/python3

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

262

It was verified that each of the formulas give the result and as an example is placed in Fig. 3,
the output of the result for the distance in the uniformly varied rectilinear movement.

Fig. 3: Calculation of uniformly varied rectilinear distance

To corroborate the graph of the code that shows position-time, velocity-time and
acceleration-time, the data of the movement of a gazelle that when traveling 2 meters
reaches an initial speed of 4 m / s and after 8 seconds has an acceleration of 0.75 m / s2 was
considered. Fig. 4 shows how this movement is represented in the graph.

Fig. 4: Position-time blue line, velocity-time orange line, acceleration-time green line,

representing the movement of a gazelle in 8 seconds.

RUSSIAN LAW JOURNAL Volume XI (2023) Issue 8s

263

CONCLUSIONS
The importance of consolidating the concepts of classical physics and programming in Python
for the teaching of higher education as a useful study tool was verified. By knowing
programming concepts you can use Python to learn and practice exercises in a didactic way
uniform rectilinear movement, parabolic movement, free fall and uniform circular

movement.
The behavior in time of position, velocity, and acceleration was graphed, which could be seen
in Fig. 4 which represented the movement of a gazelle.
It was verified that each of the options of the main menu of the submenu that runs when
choosing the options of the a-e, ran without errors and the data can be entered according to
the exercise according to the user's need.

REFERENCES

[1] Atoeva Mehriniso Farhodovna, A. J. (2020). Innovative Pedogogical Technologies For

Training The Course Of Physics. The American Journal of Interdisciplinary Innovations

and Research, 82–91. doi:https://doi.org/10.37547/tajiir/Volume02Issue12-12

[2] Ayars. (2013). Computational Physics with Python. California State: Ayars E.

[3] Bogusevschi, D. M. (2020). Teaching and Learning Physics using 3D Virtual Learning

Environment: A Case Study of Combined Virtual Reality and Virtual Laboratory in

Secondary School. Journal of Computers in Mathematics and Science Teaching, 39(1),

5-18. Obtenido de https://www.learntechlib.org/primary/p/210965/.

[4] Borcherds, P. (2007). Python: a language for computational physics. Elsiever, 177,

Issues 1–2, 199-201. doi:https://doi.org/10.1016/j.cpc.2007.02.019.

[5] Esther Cascarosa, C. S.-A. (2021). Model-based teaching of physics in higher

education: a review of educational strategies and cognitive improvements. Journal of

Applied Research in Higher Education, 13(1), 33-47.

doi:https://doi.org/10.1108/JARHE-11-2019-0287

[6] Giancoli. (2008). Physics for Science and Engineering (4th ed., Vol. 1). Mexico:

Pearson.

[7] Giancoli, D. (2014). Physics principles with applications (Vol. 1). Mexico: Pearson.

[8] Gisin, F. D. (2019). Physics without determinism: Alternative interpretations of

classical physics. Advancing Physics, 100, 062-107.

doi:https://doi.org/10.1103/PhysRevA.100.062107

[9] Resnick, H. a. (2007). Fundamentals of Physics (8 ed.). Cleveland State: Wiley.

[10] Sears, Z. (2009). University Physics (12 ed., Vol. 1). Mexico: Pearson.

[11] Serway, J. (2004). Physics for Scientist and Engineers (6 ed.). California State:

Thomson Brooks.

[12] Tetiana Goncharenko, N. Y.-C. (2021). Experience in the Use of Mobile Technologies

as a. Kherson State University. Obtenido de

https://lib.iitta.gov.ua/727258/1/20201298.pdf

